MATH 375 -- Probability and Statistics 1

December 5, 2003

The joint density function for a bivariate normal

distribution.  Note this depends on 5 parameters

mu[1], mu[2], sigma[1], sigma[2], rho .   As we saw in class, the marginal

densities of Y[1]   and Y[2]   are normal and   mu[i], sigma[i]   are

the respective mean and standard deviation of the

two normal random variables (individually).

The parameter rho   actually equals the correlation

coefficient    rho = Cov(Y[1],Y[2])/(sigma[1]*sigma[2]) .   The intuitive meaning

of rho   in this case is indicated by the following plots.

First we define the bivariate normal density function:

>    BNpdf:=(mu1,mu2,sigma1,sigma2,rho,y1,y2)->1/(2*Pi*sigma1*sigma2*sqrt(1-rho^2))*exp(-1/(1-rho^2)*((y1-mu1)^2/sigma1^2-2*rho*(y1-mu1)*(y2-mu2)+(y2-mu2)^2/sigma2^2)/2);

BNpdf := proc (mu1, mu2, sigma1, sigma2, rho, y1, y2) options operator, arrow; 1/2*1/Pi/sigma1/sigma2/sqrt(1-rho^2)*exp(-1/2*1/(1-rho^2)*((y1-mu1)^2/sigma1^2-2*rho*(y1-mu1)*(y2-mu2)+(y2-mu2)^2/sigma2^2...

With   rho = 0 ,   Y[1], Y[2]   are independent and the level curves the density function

are circles.

>    with(plots):

Warning, the name changecoords has been redefined

>    contourplot(BNpdf(0,0,1,1,0,y1,y2),y1=-3..3,y2=-3..3,scaling=constrained);

[Maple Plot]

As rho   increases toward 1, the level curves become narrower and narrower

ellipses with major axis along a line through the point ( mu[1], mu[2]  ) = (0,0)

here, with slope determined by the values of    sigma[1], sigma[2]

>    contourplot(BNpdf(0,0,1,1,.99,y1,y2),y1=-3..3,y2=-3..3,grid=[100,100],scaling=constrained);

[Maple Plot]

>   

>