
Mathematics 242 – Principles of Analysis
Solutions for Problem Set 6 – due: Monday, March 24

’A’ Section

1. Determine whether each of the following limits exists using the “big theorem” for
function limits and other results from section 3.2 of the text as needed.

(a) limx→1 x2 − 5x + 3

Solution: By parts 1 and 2 of the “big theorem,” the limit is

lim
x→1

x2 − 5 lim
x→1

x + 3 = 1 − 5 + 1 = −1.

(b) limx→ 1
3

x + 1
x2

Solution: By parts 1 and 3 of the “big theorem,” the limit is 1/3 + 9 = 28
3

.

(c) limx→1
x3−1
x2−1

Solution: The limit is 3
2 . Proof: For x 6= 1, we see

x3 − 1

x2 − 1
=

(x2 + x + 1)(x − 1)

(x − 1)(x + 1)
=

x2 + x + 1

x + 1

This shows limx→1
x3−1
x2−1

= limx→1
x2+x+1

x+1
= 3

2
.

(d) Let

f(x) =

{

x1/3 sin
(

1
x

)

if x 6= 0
3 if x = 0

and consider limx→0 f(x).

Solution: The limit is 0 by the limit squeeze theorem. We have −1 ≤ sin
(

1
x

)

≤ 1 for
all x 6= 0. So

−x1/3 ≤ f(x) ≤ x1/3

for all x 6= 0. Since limx→0 −x1/3 = limx→0 x1/3 = 0, limx→0 f(x) = 0 also.

2. Which of the functions in question 1 are continuous at the indicated c in the limits
there? Explain.

Solution: The functions in parts (a) and (b) of problem 1 are continuous at the given c since
limx→c f(x) = f(c). The function in part (c) is not continuous at 2 since f(1) is not defined.
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The function in part (d) is not continuous at x = 0 since limx→0 f(x) = 0 6= 3 = f(0) (by
the definition of f(x)).

3. True-False. For the true statements, give a short proof. For the false statements give a
counterexample.

(a) If limx→1 f(x) = e − 28
10 , then there exists a δ > 0 such that f(x) < 0 for all x with

0 < |x − 1| < δ.

This is TRUE. The reason is that a = e − 28
10 < 0 (since e

.
= 2.71828 < 2.8). So if we

take ε = |a|/2, then there is a corresponding δ > 0 such that for x with 0 < |x−1| < δ,

|f(x) − a| < |a|/2.

But this implies f(x) < a + |a|/2 = a/2 < 0 for all such x.

(b) If |f(x)| ≤ x3 for all x and limx→2 f(x) exists, then limx→2 f(x) ≤ 8.

Solution: This is TRUE. We have f(x) ≤ |f(x)| ≤ x3 so limx→2 f(x) ≤ limx→2 x3 = 8,
using Theorem 3.2.8.

(c) Let f : R → R be defined by this rule:

f(x) =
{

2x if x is rational
−2x if x is irrational.

Then limx→0 f(x) exists and equals 0.

Solution: This is TRUE. Given any ε > 0, let δ = ε/2. Then for all x with 0 <
|x − 0| < δ = ε/2, we have |2x| = | − 2x| = 2|x| for rational and irrational x, so

|f(x)| = 2|x| < 2
ε

2
= ε.

This shows the limit is 0 as claimed.

(d) If f(x) < g(x) on a deleted neighborhood of c, limx→c f(x) = L, and limx→c g(x) = M ,
then L < M .

Solution: This is FALSE. Counterexample: Let f(x) = x4 and g(x) = x2. Then
f(x) < g(x) for all x with 0 < |x − 0| < 1. But limx→0 f(x) = 0 = limx→0 g(x). (The
statement would be true if it said L ≤ M .)

’B’ Section

1. Show that your answers for parts a and d of 1 on the A section are correct using the ε, δ
definition (not the “big theorem” or other results from Chapter 3, section 1 of the text.)
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Solution: Part (a) first. Given ε > 0, let δ = min(1, ε/4). For all x with 0 < |x−1| < δ < 1,
we have 0 < x < 2, so |x − 4| < 4 and hence

|x2 − 5x + 3 − (−1)| = |x2 − 5x + 4|
= |x − 4||x − 1|
< 4 · ε

4
= ε.

This shows limx→1 x2 − 5x + 3 = −1.

Part (b). Given ε > 0, let δ = ε3 > 0. Then For all x with 0 < |x − 0| < δ = ε3, we have

|f(x) − 0| =

∣

∣

∣

∣

x1/3 sin

(

1

x

)
∣

∣

∣

∣

= |x|1/3

∣

∣

∣

∣

sin

(

1

x

)
∣

∣

∣

∣

≤ |x|1/3 < (ε3)1/3 = ε.

This shows limx→0 f(x) = 0.

2. Assume that limx→c f(x) = L.

(a) Show that there exists a constant B and δ > 0 such that |f(x)| ≤ B for all x in the
deleted neighborhood {x ∈ R | 0 < |x − c| < δ}.

Solution: Since limx→c f(x) = L, letting ε = 1, there is a corresponding δ > 0 such
that |f(x) − L| < 1 for all x in the deleted neighborhood defined by 0 < |x − c| < δ.
But for those x, L− 1 < f(x) < L + 1, so |f(x)| ≤ max(|L + 1|, |L− 1|). We can take
B = max(|L + 1|, |L− 1|).

(b) Using part (a), not the limit product rule, show that limx→c(f(x))n = Ln for all
integers n ≥ 1.

Solution: Let B and δ0 be as in part (a). That is assume that |f(x)| ≤ B for all x
with 0 < |x − c| < δ0. Given ε, since limx→c f(x) = L, we have |f(x) − L| < ε/M,
where

M = Bn−1 + Bn−2|L| + · · · + B|L|n−2 + |L|n−1

for all x with 0 < |x − c| < δ1 for some δ1 > 0. Let δ = min(δ0, δ1). Then for all x
with 0 < |x − c| < δ, we have (using the triangle inequality on the second factor on
the right side):

|(f(x))n − Ln| = |f(x)− L||(f(x))n−1 + (f(x))n−2L + · · ·+ f(x)Ln−2 + Ln−1|
≤ |f(x)− L|(|f(x)|n−1 + |f(x)|n−2|L| + · · ·+ |f(x)||L|n−2 + |L|n−1)

<
ε

M
(Bn−1 + Bn−2|L| + · · ·+ B|L|n−2 + |L|n−1)

=
ε

M
· M = ε.
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This shows limx→c(f(x))n = Ln.

(c) Assume that f(x) ≥ 0 on some deleted neighborhood of x = c. Show that

lim
x→c

√

f(x) =
√

L.

(Hint: It may help to treat the cases L = 0 and L 6= 0 separately.)

Solution: First suppose L = 0. Then for all ε > 0, there exist corresponding δ > 0
such that |f(x)| < ε2 for all x with 0 < |x− c| < δ. But then for the same x, we have
|
√

f(x)| < ε. So limx→c

√

f(x) = 0 =
√

0. Now assume L 6= 0 (so L > 0). Given

ε > 0, there exists δ > 0 such that |f(x) − L| < ε
√

L for all x with 0 < |x − c| < δ.
For these x,

|
√

f(x) −
√

L| =
|f(x) − L|
f(x) +

√
L

≤ |f(x)− L|√
L

<
ε
√

L√
L

= ε.

This shows limx→c

√

f(x) =
√

L.

3. In this problem you will show that

lim
θ→0

sin(θ)

θ
= 1.

For 0 < θ < π
2 , the point P = (cos(θ), sin(θ)) = (x, y) lies on the arc of the unit circle

x2 + y2 = 1 in the first quadrant.

(a) Let O = (0, 0), Q = (cos(θ), 0), and R = (1, 0). (Draw a picture!) By considering the
areas of the triangle ∆OQP and the circular sector ORP , deduce that if 0 < θ < π

2
,

then sin(θ) cos(θ) ≤ θ. (You may use “intuitively reasonable” facts about areas such
as the statement that if one plane region R is completely completely contained in a
second region S, then area(R) ≤ area(S).)

Solution: The area of the triangle ∆OQP is 1
2

sin(θ) cos(θ). The area of the sector is
1
2θ, since the area of the circular sector with angle Θ of a circle of radius r is Θr2

2 .
Since the sector completely contains the triangle, the desired inequality follows.

(b) Now take the tangent line to the circle at R (a vertical line), and let S = (1, tan(θ))
be the intersection of that line and the radius OP (extended). Considering the areas
of the triangle ∆ORS and the sector ORP as above, explain why θ ≤ tan(θ).
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Solution: The area of the triangle ∆ORS is 1
2 tan(θ). (By the way, in case you never

have seen this before, this is the reason that the tangent function is known by that
name!) This time the sector ORP is completely contained in the triangle, so the
inequality follows again.

(c) Combine parts (a) and (b) to deduce that if 0 < θ < π
2 , then

cos(θ) ≤ sin(θ)

θ
≤ 1

cos(θ)
.

Solution: Combining parts (a) and (b), we see

sin(θ) cos(θ) ≤ θ ≤ tan(θ) =
sin(θ)

cos(θ)
.

Since sin(θ) > 0 for the θ in this range, it follows that

cos(θ) ≤ θ

sin(θ)
≤ 1

cos(θ)

and the desired inequalities follow by taking reciprocals.

(d) Using the one-sided form of Theorem 3.2.9 (The Limit Squeeze Theorem), show that

lim
θ→0+

sin(θ)

θ
= 1.

(You will need to use the fact that cos(θ) is continuous at θ = 0.)

Solution: Since cos(θ) is continuous at θ = 0, we have limθ→0+ cos(θ) = 1 and hence
limθ→0+

1
cos(θ)

= 1 as well. By the one-sided version of the Limit Squeeze Theorem,

lim
θ→0+

sin(θ)

θ
= 1

also.
(e) Now, for −π

2 < θ < 0, show that sin(θ)
θ = sin(|θ|)

|θ| and use this to see that

lim
θ→0−

sin(θ)

θ
= 1

as well.

Solution: This follows from the fact that sin is an odd function. If θ < 0, then

sin(|θ|)
|θ| =

sin(−θ)

−θ
=

− sin(θ)

−θ
=

sin(θ)

θ
.
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By letting ϕ = |θ| > 0, from part (d) we see that

lim
θ→0−1

sin(θ)

θ
= lim

θ→0−

sin(|θ|)
|θ| = lim

ϕ→0+

sin(ϕ)

ϕ
= 1.

(f) Finally, explain how parts (d) and (e) combine to show the statement at the start of
the problem.

Solution: The desired statement follows from parts (d) and (e) and Theorem 3.3.4
(equality of the two one-sided limits implies the two-sided limit exists and equals the
common value).
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