
MATH 242 – Principles of Analysis
Solutions for Problem Set 3 – due: Feb. 14

‘A‘ Section

1. A set B is said to be finite if there is some n ∈ N (the number of elements in B),

and a one-to-one and onto mapping f : {1, 2, . . . , n} → B. (Intuitively, we think that

f(1) = b1, f(2) = b2, . . . “counts through” all the elements of B one at a time without

repetitions and without missing any elements in B.) For each of the following sets,

either show B is finite by determining the n and constructing a mapping f as above,

or say why no such mapping exists.

a. B = {r = p/q ∈ Q | 1 ≤ q ≤ 4 and 0 < r < 1}
Solution: This is a finite set containing exactly 5 elements:

B = {1/2, 1/3, 2/3, 1/4, 3/4}

We can construct a 1-1 onto mapping from {1, 2, 3, 4, 5} to this B from the order

they are listed here: f(1) = 1/2, f(2) = 1/3, f(3) = 2/3, f(4) = 1/4, f(5) = 3/4.

b. B = {r = p/q ∈ Q | 0 < r < 1}
Solution: B is not a finite set because, for instance, it contains all of the 1

n
for

n ∈ N.

c. B = {n ∈ Z | |n| ≤ 1014}
Solution: B is finite with n = 2 × 1014 + 1 elements. f(k) = −2 × 104 − 1 + k

defines a 1-1 and onto mapping from {1, 2, . . . , n} to B.

2. Which of the following sequences converge to 0? Explain your answers, but you do

not need to provide complete formal proofs of your assertions.

a. {xn}, where

xn =
{

2n if n ≤ 1000
2−n if n > 1000

Solution: Intuitively, this sequence should converge to 0 since although the first

part of it, for n ≤ 1000 grows very rapidly and reaches a huge value 21000 .
= 10300,

once n > 1000, the terms rapidly decrease to 0.

b. {yn}, where

yn =

{

1 if n is evenly divisible by 100
1
n

if n is not evenly divisible by 100
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Solution: There are arbitrarily large n that are evenly divisible by 100. So there

are yn for n arbitarily large such that yn = 1. (Formally, there exists ε > 0, like

ε = 1/2, such that for all n0, |yn − 0| > 1/2 for some n ≥ n0.)

c. {zn}, where

zn =

{

n if n is a Mersenne prime number
(−1)n

n2 if n is not a Mersenne prime number

(look these up on Wikipedia and read about them)

Solution: The question of whether there are infinitely many Mersenne prime

numbers (i.e. primes of the form M = 2p − 1 where p is a prime), is a famous

unsolved problem. It is not currently known whether there are infinitely many

such primes or not. (As of January 2014, there are 48 of them known.) Hence we

don’t know whether this sequence converges or not! If there are infinitely many

Mersenne primes, the situation is like that in b. If not, that is, if there are only

finitely many Mersenne primes, then the sequence does converge to 0.

3. Let f(x) = [x] be the greatest integer function, defined as [x] = the greatest integer

≤ x.

a. If xn → a, does it follow that [xn] → [a]? Prove or give a counterexample.

Solution: This is false because, for instance if xn = 1 − 1/n, then 0 ≤ xn < 1 for

all n ≥ 1, so [xn] = 0 for all n. But xn → a = 1, and [a] = [1] = 1.

b. If [xn] → [a], does it follow that xn → a? Prove or give a counterexample.

Solution: This is also false. Here’s a counterexample: Let xn = 1
2

for all n (a

constant sequence). Then [xn] = 0 for all n and [xn] → [0]. But xn → 1/2 6= 0.

‘B‘ Section

1.

a. Prove that
√

3 is an irrational number.

Solution: Suppose on the contrary that
√

3 = m
n

where m, n are integers. We

may assume m, n have no common factors (by cancelling any common factors

between the numerator and denominator of the fraction). Squaring both sides

and clearing denominators, we get 3n2 = m2. Since 3 divides m2 evenly, 3 must
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also divide m. In other words m = 3k for some integer k. But then 3n2 = 9k2

so n2 = 3k2. Now, we repeat the same reasoning to claim that 3 must divide

n as well. Since we assumed m, n had no common factors, we have reached a

contradiction. There can be no integers m, n that satisfy the original equation
√

3 = m
n

. Therefore
√

3 is irrational.

b. If r 6= 0 and s are rational numbers, show that r
√

3 + s is also an irrational

number. (Hint: Suppose not and derive a contradiction.)

Solution: Suppose r
√

3 + s = x, where x is rational. Then
√

3 = x−s
r

must also

be rational (Q is closed under sums and quotients). But that contradicts part a.

So r
√

3 + s is also irrational.

c. If x = r
√

3 + s and x′ = r′
√

3 + s′ are two numbers as in part b, what can be

said about x + x′ and xx′? Are they necessarily irrational too?

Solution: No, the sum and product are not necessarily irrational. For instance if

x =
√

3 and x′ = −
√

3, then x+x′ = 0 and xx′ = −3. Both of those are rational.

2. Let A and B be two nonempty sets of real numbers.

a. Assume that x ≤ y for all x ∈ A and y ∈ B. Show that lub A and glb B must

exist.

Solution: Let y ∈ B (which exists because we assume B is nonempty. By the

given information, x ≥ y for every x ∈ A. Therefore, y is an upper bound for

A. By the LUB axiom for R, A has a least upper bound in R. Similarly every

element of A is a lower bound for B, so glb(B) exists by the result of Corollary

1.5.11 in our text.

b. Under the same assumptions as part a, show that lub A ≤ glb B.

Solution: Let x ∈ A and y ∈ B. Then we have glb(B) ≤ y ≤ x ≤ lub(A) by

the given information and the definitions. By transitivity of the order, glb(B) ≤
lub(A).

c. Now assume that A and B are bounded. Is it true that lub A ≤ glb B implies

that x ≤ y for all x ∈ A and y ∈ B? Prove or give a counterexample.

Solution: This is true. Every x ∈ A satisfies x ≤ lub(A) and every y ∈ B satisfies

glb(B) ≤ y. But then under this assumption, x ≤ lub(A) ≤ glb(B) ≤ y. So

x ≤ y for all x ∈ A and y ∈ B.
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3. Let A be a bounded set of real numbers and let B = {kx | x ∈ A}, where k < 0 is a

strictly negative number. Show that B is also bounded. Then, determine formulas for

computing lub B and glb B in terms of lub A and glb A, and prove your assertions.

Solution: Since A is bounded (i.e. bounded above and below), there exist real numbers

ℓ, u such that ℓ ≤ x ≤ u for all x ∈ A. Since k is negative, this implies kℓ ≥ kx ≥ ku.

But then B is bounded too, since ku is a lower bound and kℓ is an upper bound for

B. Noting the reversal of the inequalities that occurred here, we claim that

(a) lub(B) = kglb(A), and

(b) glb(B) = klub(A).

To prove (a), write m = glb(A). By the definition, this means first that x ≥ m for all

x ∈ A. But then kx ≤ km, and hence km is an upper bound for B. Next we assume

that u is any other upper bound for B, so kx ≤ u for all x ∈ A. But this implies

x ≥ u
k

for all x ∈ A. So since m is the greatest lower bound for A, we have m ≥ u
k
.

But that implies km ≤ u. Therefore, km = lub(B). The proof of (b) is similar: write

M = lub(A). By the definition, this means first that x ≤ M for all x ∈ A. But then

kx ≥ kM , and hence kM is a lower bound for B. Next we assume that ℓ is any other

lower bound for B, so kx ≥ ℓ for all x ∈ A. But this implies x ≤ ℓ
k

for all x ∈ A. So

since M is the least upper bound for A, we have M ≤ ℓ
k
. But that implies kM ≥ ℓ.

Therefore, kM = glb(B).

4. Determine whether each of the following sequences converge and prove your assertions

using the ε, n0 definition of convergence.

a. xn = 3n2

n2+5

Solution: This sequence converges to a = 3. Proof: Let ε > 0. Since N is not

bounded in R, no matter how big
√

15
ε

is, there exist n0 >
√

15
ε

in N, and for any

such n0, n2
0 > 15

ε
(since the squaring function is increasing for positive inputs),

and hence 15
n2

0

< ε. Then for all n ≥ n0, we have

|xn − 3| =

∣

∣

∣

∣

−15

n2 + 5

∣

∣

∣

∣

<
15

n2
≤ 15

n2
0

< ε.

This shows xn → 3 as n → ∞ by the definition.

b. xn = 1
ln(n)
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Solution: This sequence converges to a = 0. Proof: Let ε > 0. Since N is not

bounded in R, no matter how big e
1

ε is, there exist n0 > e
1

ε in N, and for any

such n0, ln(n0) > 1
ε

(since ln is increasing), and hence 1
ln(n0)

< ε. Then for all

n ≥ n0, we have

|xn − 0| =

∣

∣

∣

∣

1

ln(n)

∣

∣

∣

∣

=
1

ln(n)
≤ 1

ln(n0)
< ε.

This shows xn → 0 as n → ∞ by the definition.

c. xn = cos(nπ).

Solution: We have cos(nπ) = 1 if n is even and cos(nπ) = −1 if n is odd.

Therefore xn = cos(nπ) is not convergent.
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