
MATH 242 – Principles of Analysis
Solutions for Problem Set 1 – due: Jan. 31

‘A‘ Section

1. Assume that A, B are sets of integers.

a. What is the contrapositive of the statement: “If x is even then x ∈ A ∪ B”?

Express without using not.

Solution: The contrapositive of “if p then q” is “if not q then not p.” Here, by the

DeMorgan Law, x /∈ A∪B is equivalent to x ∈ Ac and x ∈ Bc. Also, “not even”

is equivalent to “odd.” So, without using not, we can state the contrapositive as

“If x ∈ Ac and x ∈ Bc, then x is odd.”

b. What is the converse of the statement in part a?

Solution: The converse is: “If x ∈ A ∪ B, then x is even.”

2. Let A = {x ∈ R | x2 − 5x + 4 = 0}, B = (0, 1) = {x ∈ R | 0 < x < 1} and

C = { x

x
2+9 | x ∈ R} (Note: C is the range of the function f defined by f(x) = x

x
2+9 .)

a. Express the set C as a union of one or more closed intervals [a, b] in R. (Note:

You should use facts from calculus to solve this. Don’t worry that we have not

justified them yet.)

Solution: The function f(x) = x

x
2+9 has f ′(x) = 9−x

2

(x2+9)2 . This is = 0 at x = ±3.

Moreover f ′(x) < 0 for x < −3, f ′(x) > 0 for −3 < x < 3 and f ′(x) < 0 for x > 3.

Therefore, at x = −3, f has a local minimum with f(−3) = −1/6. Similarly, at

x = 3, f has a local maximum with f(3) = 1/6. We also see limx→±∞ f(x) = 0.

Hence f(−3) = −1/6 is also an absolute minimum, and f(3) = 1/6 is also an

absolute maximum. We will prove a general theorem later in the course that

shows that every y with −1/6 < y < 1/6 must also be in the range, but this can

also be checked directly here since the equation

y =
x

x2 + 9

can be rearranged to yx2 − x + 9y = 0. If y = 0, then x = 0. Otherwise, by the

quadratic formula this has roots

x =
1 ±

√

1 − 36y2

2y
.

The expression in the square root is nonnegative exactly when −1/6 ≤ y ≤ 1/6

and we get x with f(x) = y (two of them in fact for y 6= 0,−1/6, 1/6). Hence

C = [−1/6, 1/6].
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b. Find the sets B ∩ A and B ∩ C.

Solution: Since A = {1, 4}, we see that B ∩ A = ∅ and B ∩ C = (0, 1/6].

c. Find the sets B ∪ A and B ∪ C and express using set notation.

Solution: We have B ∪ A = (0, 1] ∪ {4} = B. Then by part a, B ∪ C = (0, 1) ∪
[−1/6, 1/6] = [−1/6, 1).

3. For n a general natural number, let Bn = {0, 2n}. What are ∩∞
n=1Bn and ∪∞

n=1Bn?

Solution: The union, ∪∞
n=1Bn, is the set

{0, 2, 4, · · ·} = {2n | n ≥ 0},

or the set of nonnegative even integers. The intersection, ∩∞
n=1Bn, is the set {0}, since

that is the only element in Bn for all n ≥ 1.

4. Let In = [−1/n, 1/n] for any n ≥ 1. What are ∩∞
n=1In and ∪∞

n=1In. (Explain your

reasoning intuitively.)

Solution: Note first that Im ⊂ In whenever m > n. This shows that the union is

the same as I1 = [−1, 1]. The intersection contains only 0. We will see in about a

week how to justify the claim that for any real a > 0, there is some n ≥ 1 such that

1/n < a. Hence a is not in the intersection. The same is true on the negative side:

for any b < 0, there exists some n ≥ 1 such that b < −1/n. Hence b is not in the

intersection either. This leaves only 0 which does satisfy −1/n < 0 < 1/n for all

n ≥ 1.

5. Let f : R → R be the function defined by f(x) = tan−1(x).

a. Is f one-to-one? Why or why not?

Solution: Yes, the inverse tangent of x is defined as the unique angle θ in the

interval (−π/2, π/2) such that tan(θ) = x. So tan−1(x) = θ = tan−1(x′) implies

that x = x′.

b. Is f onto? Why or why not?

Solution: No, since the range is just the interval (−π/2, π/2).

c. If I = (0,
√

3), what is the set f(I)? Explain.

Solution: f(I) = (0, π/3) since tan(0) = 0 and tan(π/3) =
√

3.

d. If J = (−π/4, π/4), what is the set f−1(J). Explain.

Solution: f−1(J) = {x | −π/4 < tan−1(x) < π/4}, which is the same as

tan(−π/4) < x < tan(π/4), so −1 < x < 1. Hence f−1(J) is the open inter-

val (−1, 1).

‘B’ Section

2



1. Prove part (f) of Theorem 1.1.3 in the text. These are the De Morgan Laws for

complements.

Solution: We show (A ∩ B)c = Ac ∪ Bc. Let x ∈ (A ∩ B)c, then x /∈ A ∩ B, which

says x /∈ A or x /∈ B. But then x ∈ Ac ∪ Bc, and it follows that (A ∩ B)c ⊂ Ac ∪ Bc.

Conversely, if x ∈ Ac ∪ Bc, then x /∈ A or x /∈ B. This shows x /∈ A ∩ B, so

x ∈ (A ∩B)c, and it follows that Ac ∪Bc ⊂ (A ∩B)c. Since we have both inclusions,

(A ∩ B)c = Ac ∪ Bc. The second statement (A ∪ B)c = Ac ∩ Bc is proved similarly.

2. Let A and B be arbitrary sets. Does A = A−(B−B), as we might expect if we looked

at the formula through the lens of ordinary algebra? If this is always true, prove it;

if it is not, give both a counterexample (an example where the formula is not true),

and a correct statement with proof.

Solution: This is true since for any set B, we have B −B = ∅. This follows from part

g of Theorem 1.1.3, for instance: B − B = B ∩ Bc = ∅. But then A − ∅ = A, since

A − ∅ = A ∩ ∅c = A ∩ U = A (where U denotes the universal set).

3. Let f : A → B be a function.

a. Let C, D be subsets of A. Is it always true that f(C ∩D) = f(C)∩ f(D)? If this

is always true prove it; if it is not, give a counterexample.

Solution: This is not true. For instance, let f : R → R be defined by f(x) = x2.

Let C = (−1, 0) and D = (0, 1). Then f(C) = f(D) = (0, 1), so f(C) ∩ f(D) =

(0, 1). But C ∩D = ∅, so f(C ∩D) = ∅ as well. Note that other similar examples

can be constructed any time that f is not one-to-one.

b. Show that f is one-to-one if and only if f−1(f(C)) = C for all subsets C of A.

Solution: First note that C ⊆ f−1(f(C)) for all f and all C since if x ∈ C, then

f(x) ∈ f(C), so x ∈ f−1(f(C)) and hence C ⊆ f−1(f(C)). So what we need to

show here can be restated as follows: (1) if f is one-to-one, then we need to show

f−1(f(C)) ⊆ C for all C. And conversely (2) if f−1(f(C)) ⊆ C for all C, then

we need to show that f is one-to-one.

To prove (1), let f be one-to-one. For each y ∈ f(C), there is some x ∈ C

such that f(x) = y. But if f(x′) = y, then f being one-to-one implies that

x = x′. Hence the only elements of A that map to f(C) are the elements of C,

so f−1(f(C)) ⊆ C.

To prove (2), let f−1(f(C)) ⊆ C for all subsets C of A. In particular, let C =

{x} for some particular element x ∈ A. Suppose that f(x′) = f(x). Then

by definition, x and x′ are both elements of f−1(f(C)). But by assumption

f−1(f(C)) = {x}, so x = x′. This shows that f must be one-to-one.
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4. Let f : A → B and g : B → C.

a. Show that if f and g are both onto, then g ◦ f : A → C is also onto.

Solution: Let z ∈ C. Since g is onto, there exists y ∈ B such that g(y) = z. But

then since f is onto, there exists x ∈ A such that f(x) = y. Combining these

statements, we see that g(f(x)) = (g ◦ f)(x) = z. Since z was arbitrary, this

shows that g ◦ f is onto.

b. Is the converse of the statement in part a true? That is, if you know that g ◦ f is

onto, does it follow that f and g are onto? Prove or find a counterexample.

Solution: This statement is not true. Let A = B = R and C = [0,∞), and let

f : A → B be defined by f(x) = x2 and g(y) =
√

|y|. Then for all z ∈ C we have

z = g(f(z)), so g ◦ f is onto. However, f is not onto since its range contains no

negative numbers. (It does follow in general that g must be onto, but as in the

counterexample, if g is not one-to-one, the range of f only needs to contain one

inverse image of each element z ∈ C.)
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