MATH 242 — Principles of Analysis
Solutions for Problem Set 1 — due: Jan. 31

‘A Section

1. Assume that A, B are sets of integers.
a. What is the contrapositive of the statement: “If x is even then x € AU B”?
Express without using not.
Solution: The contrapositive of “if p then ¢” is “if not ¢ then not p.” Here, by the
DeMorgan Law, x ¢ AU B is equivalent to = € A and x € B°. Also, “not even”
is equivalent to “odd.” So, without using not, we can state the contrapositive as
“If x € A and x € B¢, then x is odd.”
b. What is the converse of the statement in part a?
Solution: The converse is: “If x € AU B, then x is even.”
2. Let A={r e R |22-52+4=0}, B=(0,1)={reR|0<z <1} and
C = {355 | # € R} (Note: C is the range of the function f defined by f(z) = %)
a. Express the set C' as a union of one or more closed intervals [a,b] in R. (Note:
You should use facts from calculus to solve this. Don’t worry that we have not
justified them yet.)
Solution: The function f(r) = %5 has f'(z) = %. This is = 0 at z = 3.
Moreover f'(z) < 0 for x < =3, f'(z) > 0 for =3 <z < 3 and f'(z) < 0 for z > 3.
Therefore, at © = —3, f has a local minimum with f(—3) = —1/6. Similarly, at
x = 3, f has a local maximum with f(3) = 1/6. We also see lim,_, 1, f(x) = 0.
Hence f(—3) = —1/6 is also an absolute minimum, and f(3) = 1/6 is also an
absolute maximum. We will prove a general theorem later in the course that
shows that every y with —1/6 < y < 1/6 must also be in the range, but this can
also be checked directly here since the equation
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can be rearranged to yr? —x + 9y = 0. If y = 0, then x = 0. Otherwise, by the

quadratic formula this has roots

_ 1+4/1—36y2
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The expression in the square root is nonnegative exactly when —1/6 < y < 1/6
and we get x with f(z) = y (two of them in fact for y # 0,—1/6,1/6). Hence
C=1[-1/6,1/6].



b. Find the sets BN A and BNC.
Solution: Since A = {1,4}, we see that BN A= () and BNC = (0,1/6].
c. Find the sets BU A and B U C and express using set notation.
Solution: We have BU A = (0,1] U {4} = B. Then by part a, BUC = (0,1) U
[—1/6,1/6] =[—-1/6,1).
3. For n a general natural number, let B,, = {0,2n}. What are N2>, B,, and U2, B,,?

Solution: The union, US2 B,,, is the set

{0,2,4,---} ={2n | n > 0},
or the set of nonnegative even integers. The intersection, N2, B,,, is the set {0}, since
that is the only element in B,, for all n > 1.
4. Let I, = [-1/n,1/n] for any n > 1. What are N{2 I, and U2 ,I,. (Explain your
reasoning intuitively.)
Solution: Note first that I,,, C I,, whenever m > n. This shows that the union is
the same as [; = [—1,1]. The intersection contains only 0. We will see in about a
week how to justify the claim that for any real a > 0, there is some n > 1 such that
1/n < a. Hence a is not in the intersection. The same is true on the negative side:
for any b < 0, there exists some n > 1 such that b < —1/n. Hence b is not in the
intersection either. This leaves only 0 which does satisfy —1/n < 0 < 1/n for all
n > 1.
5. Let f: R — R be the function defined by f(z) = tan=!(x).
a. Is f one-to-one? Why or why not?
Solution: Yes, the inverse tangent of x is defined as the unique angle 6 in the
interval (—7/2,7/2) such that tan() = z. So tan=!(z) = § = tan—!(2’) implies
that x = .
b. Is f onto? Why or why not?
Solution: No, since the range is just the interval (—m/2,7/2).
c. If I = (0,v/3), what is the set f(I)? Explain.
Solution: f(I) = (0,7/3) since tan(0) = 0 and tan(rw/3) = /3.
d. If J = (—7/4,m/4), what is the set f~1(J). Explain.
Solution: f~Y(J) = {z | —7/4 < tan~!(x) < =w/4}, which is the same as
tan(—m/4) < x < tan(n/4), so —1 < z < 1. Hence f~!(J) is the open inter-
val (—=1,1).

‘B’ Section



1. Prove part (f) of Theorem 1.1.3 in the text. These are the De Morgan Laws for
complements.
Solution: We show (AN B)¢ = A°U B¢. Let z € (AN B)¢, then z ¢ AN B, which
says x ¢ A or x ¢ B. But then x € A°U B¢, and it follows that (AN B)¢ C A°U B°.
Conversely, if x € A°U B¢ then z ¢ A or x ¢ B. This shows x ¢ AN B, so
xz € (AN B)¢, and it follows that A°U B¢ C (AN B)¢. Since we have both inclusions,
(AN B)¢ = A°U B°. The second statement (AU B)¢ = A°N B¢ is proved similarly.
2. Let A and B be arbitrary sets. Does A = A— (B — B), as we might expect if we looked
at the formula through the lens of ordinary algebra? If this is always true, prove it;
if it is not, give both a counterexample (an example where the formula is not true),
and a correct statement with proof.
Solution: This is true since for any set B, we have B — B = (). This follows from part
g of Theorem 1.1.3, for instance: B — B = BN B = (). But then A — () = A, since
A—D=AnNnPc=ANU = A (where U denotes the universal set).
3. Let f: A — B be a function.
a. Let C, D be subsets of A. Is it always true that f(CN D) = f(C)N f(D)? If this
is always true prove it; if it is not, give a counterexample.
Solution: This is not true. For instance, let f : R — R be defined by f(z) = z2.
Let C = (—1,0) and D = (0,1). Then f(C) = f(D) = (0,1), so f(C)N f(D) =
(0,1). But CND =10, so f(CND) =0 as well. Note that other similar examples
can be constructed any time that f is not one-to-one.

b. Show that f is one-to-one if and only if f~1(f(C)) = C for all subsets C of A.

Solution: First note that C C f~1(f(C)) for all f and all C since if x € C, then
f(z) € f(C),s0 x € f~Y(f(C)) and hence C C f~1(f(C)). So what we need to
show here can be restated as follows: (1) if f is one-to-one, then we need to show
f~Y(f(C)) C C for all C. And conversely (2) if f=1(f(C)) C C for all C, then
we need to show that f is one-to-one.

To prove (1), let f be one-to-one. For each y € f(C), there is some x € C
such that f(z) = y. But if f(2’) = y, then f being one-to-one implies that
x = 2. Hence the only elements of A that map to f(C) are the elements of C,
so f7H(f(C)) € C.

To prove (2), let f~1(f(C)) C C for all subsets C' of A. In particular, let C' =
{z} for some particular element = € A. Suppose that f(z') = f(z). Then
by definition,  and 2z’ are both elements of f~!(f(C)). But by assumption
=Y f(C)) = {x}, so x = 2’. This shows that f must be one-to-one.
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4. Let f:A— Bandg: B— C.

a. Show that if f and g are both onto, then go f : A — C is also onto.

Solution: Let z € C. Since g is onto, there exists y € B such that g(y) = z. But
then since f is onto, there exists x € A such that f(z) = y. Combining these
statements, we see that g(f(z)) = (g o f)(x) = 2. Since z was arbitrary, this
shows that g o f is onto.

b. Is the converse of the statement in part a true? That is, if you know that go f is
onto, does it follow that f and g are onto? Prove or find a counterexample.
Solution: This statement is not true. Let A = B =R and C = [0,000), and let
f: A — Bbe defined by f(z) = 2% and g(y) = v/]y|. Then for all z € C we have
z=g(f(2)), so go f is onto. However, f is not onto since its range contains no
negative numbers. (It does follow in general that g must be onto, but as in the
counterexample, if g is not one-to-one, the range of f only needs to contain one

inverse image of each element z € C'.)



