
Mathematics 242 – Principles of Analysis
Solutions for Problem Set 7 – due: Friday, April 12

’A’ Section

1. Let f(x) = 15x
x4+x2+1

. Using the Intermediate Value Theorem,
A) Show: For all k ∈ [−5, 5], there exist c ∈ [−1, 1] such that f(c) = k.

Solution: First, f(x) is a rational function and x4 + x2 + 1 > 1 for all x ∈ R, so it
follows that f(x) is continuous at all c ∈ R. We have f(−1) = −5 and f(1) = 5.
Therefore, by the IVT, for all k ∈ [−5, 5], there exist c ∈ [−1, 1] such that f(c) = k.

B) Show: For all k with 0 < k < 5, there exist some c ∈ (1,∞) such that f(c) = k.
Solution: We see by the “Big Theorem” on function limits that limx→∞ f(x) = 0.
Hence if we have any k with 0 < k < 5, then there exists a B > 1 such that f(B) < k <
5 = f(1). Applying the IVT on the interval [1, B], we see there is a c ∈ (1, B) ⊂ (1,∞)
such that f(c) = k.

C) Show that if 0 < m < 15, then f(x) = mx has two real solutions other than x = 0.
Solution: Note that

f(x) − mx =
15x

x4 + x2 + 1
− mx =

−mx5 − mx3 − (m − 15)x

x4 + x2 + 1
.

The numerator factors as

−mx

(

x4 + x2 +
m − 15

m

)

.

Method 1: The polynomial g(x) = x4+x2+ m−15

m is continuous at all real x. Moreover,
g(0) = m−15

m < 0 (since m < 15 while g(b) > 0 if b is sufficiently large because the
x4 term occurs with a positive coefficient. Therefore, by the IVT, there is a c with
g(c) = 0 on the interval (0, b). Since g(x) is an even function, we also have g(−c) = 0.

Method 2: Applying the quadratic formula to the quadratic in x2, the second factor
is zero when

x2 =
−1 ±

√

1 − 4
(

m−15

m

)

2
=

−√
m ±

√
60 − 3m

2
√

m

In order for this to be defined, we must have m > 0. For x2 to be positive we must
take the + sign and we must have 60 − 3m > m, so m < 15. For 0 < m < 15, there
are two solutions found by taking the positive and negative square roots of the above:

x = ±
√

−√
m +

√
60 − 3m

2
√

m
.

Neither of these is equal to zero.
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2. Show that there are at least three real solutions of the equation sin(x)+2 cos(x) = x/2.
Hint: Look at the values of g(x) = sin(x) + 2 cos(x) − x/2 at “nice” multiples of π

2
.

Solution: From calculus we know that sin(x) and cos(x) are differentiable for all x and
the same is true for x/2. Therefore, the function g(x) is differentiable everywhere and
consequently continuous everywhere. We have

g

(−3π

2

)

= 1 +
3π

4
> 0

g(−π) = −2 +
π

2
< 0

g

(−π

2

)

= −1 +
π

4
< 0

g(0) = 2 > 0

g
(π

2

)

=
1

2
> 0

g(π) = −2 − π

2
< 0

Therefore, the IVT implies that g has one zero in the interval (−3π/2,−π), another in the
interval (−π

2
, 0), and a third in the interval (π/2, π).

3. Using the definition of the derivative, find the value of f ′(c), or say why f is not
differentiable at x = c:

A) f(x) = x3 + 2x + 1 at c = 2.
Solution: We have

f ′(2) = lim
x→2

(x3 + 2x + 1) − 13

x − 2

= lim
x→2

(x − 2)(x2 + 2x + 6)

x − 2

= lim
x→2

x2 + 2x + 6

= 14.

B) f(x) = sin(|x|) at c = 0. Hint: Look back at Problem Set 6, B 2.
Solution: f ′(0) does not exist for this function because

lim
x→0+

sin(|x|)
x

= +1

by the indicated problem on Problem Set 6, while

lim
x→0−

sin(|x|)
x

= lim
x→0−

− sin(x)

x
= −1.
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Since the one-sided limits are not equal, the derivative at 0 does not exist.
C) The function defined by

f(x) =

{

x2 if x > 1
2x − 1 if x ≤ 1

at c = 1.
Solution: We have

lim
x→1+

f(x) − f(1)

x − 1
= lim

x→1+

x2 − 1

x − 1
= lim

x→1+
x + 1 = 2.

On the other hand,

lim
x→1−

f(x) − f(1)

x − 1
= lim

x→1−

2x − 2

x − 1
= lim

x→1−

2 = 2.

Since the one-sided limits exist and are equal, f ′(1) exists and equals 2.
D) The function defined by

f(x) =

{

x2 if x ∈ Q

0 if x ∈ Qc

at c = 0.
Solution: We have for x 6= 0,

f(x) − f(0)

x − 0
=

{

x if x ∈ Q

0 if x ∈ Qc

Given any ε > 0, if we take δ = ε, then for all x in the deleted neighborhood defined
by 0 < |x| < ε,

∣

∣

∣

∣

f(x) − f(0)

x − 0
− 0

∣

∣

∣

∣

< ε.

It follows that

lim
x→0

f(x) − f(0)

x − 0
= 0 = f ′(0).

(It is not too hard to show that f ′(c) exists only for this one c = 0. This function is
not differentiable anywhere else.)

4. Suppose f, g are differentiable functions with f(g(x)) = x
x2+1

and that

g(1) = 1 g(2) = 4
g′(1) = 2 g′(2) = −1

Determine the equation of the tangent line to the given graph at the given point.
A) y = f(x) at (1, f(1)).

3



Solution: First, f(1) = f(g(1)) = 1

2
. By the Chain Rule (f ◦ g)′(1) = f ′(g(1))g′(1) =

2f ′(1). On the other hand, by the Quotient Rule,

(f ◦ g)′(x) =
(x2 + 1)(1) − (x)(2x)

(x2 + 1)2
=

1 − x2

(x2 + 1)2

So (f ◦ g)′(1) = 0 and hence f ′(1) = 0. The tangent line to y = f(x) at (1, f(1)) is
the horizontal line y = 1

2
.

B) y = (f ◦ g)(x) at (2, (f ◦ g)(2)).

Solution: By the computations in part A, f(g(2)) = 2

5
and (f ◦ g)′(2) = −3

25
. So the

tangent line is

y =
2

5
− 3

25
(x − 2).

’B’ Section

1. Let f be continuous on [0, 1] with f(0) < 0 and f(1) > 1. Suppose that g is another
continuous function on [0, 1] such that g(0) ≥ 0 and g(1) ≤ 1. Show that there exists some
c ∈ (0, 1) such that f(x) = g(x).

Solution: Let h(x) = f(x)−g(x). Since f, g are continuous on [0, 1], the same is true for h.
By the given information, h(0) = f(0) − g(0) < 0 and h(1) = f(1) − g(1) > 0. Therefore,
the IVT implies that h(c) = 0 for some c ∈ (0, 1). But then 0 = h(c) = f(c) − g(c), so
f(c) = g(c).

2. Let f be continuous on [a, b] with f(a) < k < f(b). Here is a variation on our proof of
the Intermediate Value Theorem.
A) Let

T = {x ∈ [a, b] | f(x) > k}.

Show that T has a greatest lower bound and that f(glb(T )) = k.

Solution: T is contained in the interval [a, b], so it is a bounded subset of R. Then
c = glb(T ) exists by the LUB Axiom. Note that a < c since f(a) < k. Hence the
interval [a, c) is contained in the complement of T . If we let {xn} be any sequence
contained in [a, c) converging to c, then since f is continuous, limn→∞ f(xn) = f(c).
But f(xn) ≤ k for all n, so

(1) f(c) = lim
n→∞

f(xn) ≤ k

also (by Corollary 2.2.8 in the text). On the other hand, given any ε > 0, c + ε is not
a lower bound for T , so there exists some x ∈ T such that c ≤ x < c + ε. Apply this
for ε = 1

n for each natural number. Then we get a sequence x′

n such that x′

n ∈ T for
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all n and c ≤ x′

n < c + 1

n . It follows easily that x′

n → c as n → ∞. Therefore since f
is continuous at c, limn→∞ f(x′

n) = f(c). But x′

n ∈ T for all n, so f(x′

n) > k. Hence

(2) f(c) = lim
n→∞

f(x′

n) ≥ k.

The two inequalities (1) and (2) show that f(c) = k.

B) Will this glb(T ) always be the same as the c we found in our proof of the IVT with
f(c) = k? If so, prove they are the same; if not, give a counterexample.

Solution: In the proof we did in class we considered

S = {x ∈ [a, b] | f(x) ≤ k}

and we showed that if c′ = lub(S), then f(c′) = k. The c found in part A and the c′

here do not have to be the same. For instance, let f(x) = x3 − 2x + 1 on [−2, 2]. We
have f(−2) = −3 and f(2) = 5. So the IVT will apply for any k with −3 < k < 5.
Consider k = 0. The equation x3 − 2x + 1 = 0 actually has three different roots in
the interval [−2, 2]: One between −2 and −1 (call this one α), a second between 1/2
and 1 (call this one β), and a third at x = 1. The set T as in part A is the union
T = (α, β) ∪ (1, 2), so c = glb(T ) = α. On the other hand, the set S as in the proof
we did in class is S = [−2, α] ∪ [β, 1], so c′ = lub(S) = 1.

3. This property deals with another property of real-valued functions of a real variable
sometimes called Lipschitz continuity.

A) Let f be a function on an interval I with the property that there exists a strictly
positive constant k such that |f(x) − f(x′)| ≤ k|x − x′| for all x, x′ ∈ I (this is the
definition of Lipschitz continuity). Show that f is uniformly continuous on I.

Solution: Given ε > 0, let δ = ε/k. Then for any x, x′ ∈ I such that |x−x′| < δ = ε/k,
it follows that

|f(x) − f(x′)| ≤ k|x − x′| < k · ε/k = ε.

This shows that the definition of uniform continuity is satisfied for f on I.

B) The converse of the statement in part A is not true: Show that f(x) = x1/3 is uniformly
continuous on [−1, 1], but there is no constant k such that |f(x) − f(x′)| ≤ k|x − x′|
for all x, x′ ∈ [−1, 1]. Hint: Think slopes of secant lines to the graph y = x1/3.

Solution: First, f(x) is continuous on [−1, 1], hence it is uniformly continuous by the
result of Theorem 3.6.8 (proved in class before Easter break). Let x′ = 0 and take
arbitrary x > 0 we have

f(x) − f(0)

x − 0
=

x1/3

x
=

1

x
2
3

.
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But limx→0+
1

x
2
3

= +∞. In other words, the value of the difference quotient will get

unboundedly large as x → 0+. Hence there is no single k such that

∣

∣

∣

∣

f(x) − f(0)

x − 0

∣

∣

∣

∣

≤ k

for all x in [−1, 1]. But that shows that there is no k such that |f(x)−f(0)| ≤ k|x−0|
for all x in [−1, 1].

4. Let f and g be differentiable on (a, c) and let b ∈ (a, c). Assume f(b) = g(b). Define a
new function by

p(x) =

{

f(x) if x ∈ (a, b)
g(x) if x ∈ [b, c)

Show that p is differentiable on (a, c) if and only if f ′(b) = g′(b).

Solution: Assume first that f ′(b) = g′(b). Then

lim
x→b−

p(x) − p(b)

x − b
= lim

x→b−

f(x) − f(b)

x − b

= f ′(b)

By our assumption, this is also

= g′(b)

= lim
x→b+

g(x) − g(b)

x − b

= lim
x→b+

p(x) − p(b)

x − b
.

This shows that p is differentiable at b since the one sided limits of the difference quotients
for p exist and are equal. Differentiability of p at all x 6= b in (a, c) follows from the way
p(x) is defined. At those x, the values of p are either the same as the values of f or the
values of g on some interval containing x. Hence, for instance, if a < x0 < b, then since
p(x) = f(x) for all x in an interval containing x0,

p′(x0) = lim
x→x0

p(x) − p(x0)

x − x0

= lim
x→x0

f(x) − f(x0)

x − x0

= f ′(x0),

since f is differentiable at x0. Similarly, if b < x0 < c, then p′(x0) = g′(x0).
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Conversely, suppose that p is differentiable at all x in (a, c). This implies in particular
that p is differentiable at x = b, so

f ′(b) = lim
x→b−

f(x) − f(b)

x − b

= lim
x→b−

p(x) − p(b)

x − b

= lim
x→b+

p(x) − p(b)

x − b

= lim
x→b+

g(x) − g(b)

x − b

= g′(b).
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