Mathematics 242 — Principles of Analysis
Solutions for Problem Set 7 — due: Friday, April 12

"A’ Section
1. Let f(z) = % Using the Intermediate Value Theorem,
A) Show: For all k € [—5, 5], there exist ¢ € [—1, 1] such that f(c) = k.

B)

Solution: First, f(z) is a rational function and 2* + 22 +1 > 1 for all z € R, so it
follows that f(x) is continuous at all ¢ € R. We have f(—1) = —5 and f(1) = 5.
Therefore, by the IVT, for all k € [—5, 5], there exist ¢ € [—1, 1] such that f(c) = k.
Show: For all k£ with 0 < k£ < 5, there exist some ¢ € (1, 00) such that f(c) = k.
Solution: We see by the “Big Theorem” on function limits that lim,_,., f(z) = 0.
Hence if we have any k with 0 < k < 5, then there exists a B > 1 such that f(B) < k <
5= f(1). Applying the IVT on the interval [1, B], we see thereisa c € (1, B) C (1, 00)
such that f(c) = k.

Show that if 0 < m < 15, then f(z) = maz has two real solutions other than = = 0.
Solution: Note that

15z —ma® —ma3 — (m — 15)z
———— —mx =
zt + 2% +1 zt+2%+1

f(z) =mz =

The numerator factors as

— 15
—mx<x4+x2—i—m )
m

Method 1: The polynomial g(z) = x*+22+ m#IB is continuous at all real . Moreover,
g(0) = =15 < 0 (since m < 15 while g(b) > 0 if b is sufficiently large because the
x* term occurs with a positive coefficient. Therefore, by the IVT, there is a ¢ with
g(c) = 0 on the interval (0, b). Since g(z) is an even function, we also have g(—c) = 0.

Method 2: Applying the quadratic formula to the quadratic in 2, the second factor

is zero when
m—15
2 SLEY1I-A(ER)  m+ V60— 3m
2 2/m
In order for this to be defined, we must have m > 0. For 22 to be positive we must

take the + sign and we must have 60 — 3m > m, so m < 15. For 0 < m < 15, there
are two solutions found by taking the positive and negative square roots of the above:

_ —v/m + /60 — 3m
x = N .

Neither of these is equal to zero.



2. Show that there are at least three real solutions of the equation sin(x) +2 cos(z) = /2.
Hint: Look at the values of g(z) = sin(z) + 2 cos(x) — /2 at “nice” multiples of 7.

Solution: From calculus we know that sin(z) and cos(x) are differentiable for all x and
the same is true for x/2. Therefore, the function g(z) is differentiable everywhere and
consequently continuous everywhere. We have

-3 3
g(—w):1+—7r>0

2 4
g(—ﬁ):—2+g<0
—Tr T
T)=-1+1<0
o(F) =147
g(0)=2>0
s 1
Z)==>0
9(2 2
g(ﬂ):—2—g<0

Therefore, the IVT implies that g has one zero in the interval (—37/2, —7), another in the
interval (57, 0), and a third in the interval (7/2, 7).

3. Using the definition of the derivative, find the value of f’(c), or say why f is not
differentiable at x = c:

A) f(x)=23+2zx+1at c=2.
Solution: We have

3
. +2r+1)— 13
f(2) = lim o
— lim (x — 2)(2? + 22 + 6)
r—2 {,()—2

= lin12x2—|—2x—i—6
= 14.

B) f(x)=sin(]z|) at ¢ = 0. Hint: Look back at Problem Set 6, B 2.
Solution: f’(0) does not exist for this function because

tim 500D

z—0+ T
by the indicated problem on Problem Set 6, while

sin(|z|) — sin(z)

lim = lim = —1.
r—0— X x—0— X
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Since the one-sided limits are not equal, the derivative at 0 does not exist.
The function defined by
2 .
=z ifx>1
f<x)_{2x—1 if 2 <1

at ¢ = 1.
Solution: We have

— f(1 21
fim &S ® — lim z+1=2.
rz—1+ x—1 z—1t x —1 r—1+
On the other hand,
o TSy 222 0y
z—1— z—1 z—1— T — z—1—

Since the one-sided limits exist and are equal, f/(1) exists and equals 2.
The function defined by
2 freqQ
fla) = {O if x € Q°
at c = 0.
Solution: We have for x # 0,

flx)=f(0) [z ifzxeqQ
10 ifzreQ°

Given any € > 0, if we take § = ¢, then for all z in the deleted neighborhood defined
by 0 < |z| < €,

10 .
x—0 '
It follows that
lim L&) = SO £(0).

z—0 z—0

(It is not too hard to show that f’(c) exists only for this one ¢ = 0. This function is
not differentiable anywhere else.)

4. Suppose f, g are differentiable functions with f(g(x)) = %5 and that

g()=1 g2) =1
g =2 ¢@=-1

Determine the equation of the tangent line to the given graph at the given point.

A)

y = f(x)at (1, f(1)).



Solution: First, f(1) = f(g(1)) = 3. By the Chain Rule (f o g)’(1) = f'(g(1))g'(1) =
2f'(1). On the other hand, by the Quotient Rule,

(z*+1)(1) = (z)(22) _ 1-—a?

(fog)(x)= (2 + 1)2 - (22 +1)2

So (fog) (1) =0 and hence f’(1) = 0. The tangent line to y = f(x) at (1, f(1)) is

the horizontal line y = %

B) y=(fog)(x)at (2,(fog)(2)).

Solution: By the computations in part A, f(g(2)) = 2 and (f o g)'(2) = 52. So the
tangent line is

2
—Z_2(x-9).
y=z 25(93 )

'B’ Section

1. Let f be continuous on [0,1] with f(0) < 0 and f(1) > 1. Suppose that g is another
continuous function on [0, 1] such that g(0) > 0 and ¢g(1) < 1. Show that there exists some
¢ € (0,1) such that f(z) = g(x).

Solution: Let h(z) = f(z)—g(x). Since f, g are continuous on [0, 1], the same is true for h.
By the given information, h(0) = f(0) — ¢(0) < 0 and h(1) = f(1) — g(1) > 0. Therefore,
the IVT implies that h(c) = 0 for some ¢ € (0,1). But then 0 = h(c) = f(c) — g(c), so
fle) = g(c).

2. Let f be continuous on [a,b] with f(a) < k < f(b). Here is a variation on our proof of
the Intermediate Value Theorem.
A) Let

T ={x € [a,b]| f(z) > k}.

Show that T has a greatest lower bound and that f(glb(T)) = k.

Solution: T is contained in the interval [a, D], so it is a bounded subset of R. Then
¢ = glb(T") exists by the LUB Axiom. Note that a < ¢ since f(a) < k. Hence the
interval [a,c) is contained in the complement of T'. If we let {z,} be any sequence
contained in [a, ¢) converging to ¢, then since f is continuous, lim, . f(z,) = f(¢).
But f(z,) < k for all n, so

(1) fle)=lim f(z,) <k

n—oo

also (by Corollary 2.2.8 in the text). On the other hand, given any ¢ > 0, ¢+ ¢ is not
a lower bound for 7', so there exists some z € T such that ¢ < x < ¢+ . Apply this
for e = L for each natural number. Then we get a sequence z/, such that z/, € T for
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alln and c < 2/, <c+ % It follows easily that x/, — ¢ as n — oo. Therefore since f
is continuous at ¢, lim, . f(z}) = f(c). But 2/, € T for all n, so f(x]) > k. Hence

(2) fle)= lim f(a7) > k.

n—oo

The two inequalities (1) and (2) show that f(c) = k.

Will this glb(T") always be the same as the ¢ we found in our proof of the IVT with
f(c) = k7 If so, prove they are the same; if not, give a counterexample.

Solution: In the proof we did in class we considered
S=A{z€la,b] | f(z) <k}

and we showed that if ¢ = lub(S), then f(¢’) = k. The ¢ found in part A and the ¢
here do not have to be the same. For instance, let f(z) = 2% — 2z + 1 on [-2,2]. We
have f(—2) = —3 and f(2) = 5. So the IVT will apply for any k& with —3 < k < 5.
Consider k = 0. The equation 2 — 22 + 1 = 0 actually has three different roots in
the interval [—2,2]: One between —2 and —1 (call this one «), a second between 1/2
and 1 (call this one (3), and a third at x = 1. The set T" as in part A is the union
T = (a,0)U(1,2), so ¢ = glb(T) = a. On the other hand, the set S as in the proof
we did in class is S = [-2,a] U [3, 1], so ¢ = lub(S) = 1.

3. This property deals with another property of real-valued functions of a real variable
sometimes called Lipschitz continuity.

A)

Let f be a function on an interval I with the property that there exists a strictly
positive constant k such that |f(z) — f(2")| < klz — 2’| for all ,2" € I (this is the
definition of Lipschitz continuity). Show that f is uniformly continuous on I.

Solution: Given e > 0, let 6 = ¢/k. Then for any z, 2" € I such that |[z—2'| < 6§ = ¢/k,
it follows that
[f () = f@)| < klz —a'| <k-e/k=e.
This shows that the definition of uniform continuity is satisfied for f on I.
The converse of the statement in part A is not true: Show that f(z) = 2'/3 is uniformly

continuous on [—1, 1], but there is no constant k such that |f(z) — f(z)| < k|z — 2/|
for all x,2’ € [—1,1]. Hint: Think slopes of secant lines to the graph y = zl/3.

Solution: First, f(x) is continuous on [—1, 1], hence it is uniformly continuous by the
result of Theorem 3.6.8 (proved in class before Easter break). Let 2’ = 0 and take
arbitrary x > 0 we have




But lim, g+ — = 400. In other words, the value of the difference quotient will get
x 3

unboundedly large as  — 0%. Hence there is no single k such that

for all x in [—1, 1]. But that shows that there is no k such that |f(z) — f(0)| < k|z —0|
for all z in [—1,1].

4. Let f and g be differentiable on (a,c) and let b € (a,c). Assume f(b) = g(b). Define a
new function by

| f(x) ifz e (a,b)
p(x)_{g(a:) if z € [b, c)

Show that p is differentiable on (a, c) if and only if f/'(b) = ¢’(b).

Solution: Assume first that f/(b) = ¢’(b). Then

o P@) = p0) _ o f@) — 1)
c—b- T —0b a—b- T —b
= f'(b)

By our assumption, this is also

=g'(b)
o) —g)
z—bt r—>b
p(z) — p(b)

This shows that p is differentiable at b since the one sided limits of the difference quotients
for p exist and are equal. Differentiability of p at all  # b in (a, ¢) follows from the way
p(x) is defined. At those z, the values of p are either the same as the values of f or the
values of g on some interval containing x. Hence, for instance, if a < zg < b, then since
p(x) = f(z) for all x in an interval containing x,

P (o) = lim P —P0) gy S(@) ~ f(ao)
T—T Tr — X r—xg T — To

= f/(x())v

since f is differentiable at xy. Similarly, if b < zg < ¢, then p'(z¢) = ¢'(z¢).
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Conversely, suppose that p is differentiable at all x in (a, ¢). This implies in particular
that p is differentiable at x = b, so

) = g L1=I0
) )
r—b— )
o pa) = plh)
z—bt r—>b
o 90— o)
z—bt r—>b
=9'(b)



