
Mathematics 242 – Principles of Analysis
Solutions for Problem Set 5

Due: March 15, 2013

‘A’ Section

1. For each of the following sequences, determine three different subsequences, each con-
verging to a different limit. For each one, express your three subsequences as xnk

for a
suitably chosen (strictly increasing) index sequence nk, and give an explicit formula for nk

as a function of k:

(a) xn = cos
(

π
√

n
2

)

Solution: If nk = (4k)2, then xnk
= 1 for all k, so that subsequence converges to 1.

If nk = (2(2k + 1))2, then xnk
= −1 for all k, so that subsequence coverges to −1.

Finally, if nk = (2k − 1)2, then xnk
= 0 for all k so that subsequence converges to 0.

There are infinitely many other correct examples too.

(b) xn = n
3
−

[

n
3

]

(as usual, [ ] denotes the greatest integer function)

Solution: Let nk = 3k, then x3k = k − k = 0 for all k, so that subsequence converges
to 0. Let nk = 3k + 1, then x3k+1 = k + 1/3 − k = 1/3 for all k, so that subsequence
converges to 1/3. Finally, if nk = 3k + 2, then the subsequence x3k+2 converges to
2/3.

2. Let xn = n1/4. For each of the following sequences, either express that sequence as a
subsequence of the sequence xnk

for some explicit (strictly increasing) index sequence nk,
or say why that is impossible:

(a) {2, 3, 4, 5, . . .}
Solution: This is the subsequence xnk

for nk = (k + 1)4, k ≥ 1.

(b) {
√

3,
√

6,
√

9,
√

12, . . .}
Solution: This is the subsequence xnk

for nk = (3k)2, k ≥ 1.

(c) {1, 2, 4, 8, 16, 32, . . .}
Solution: This is the subsequence xnk

for nk = 24k−4, k ≥ 1.

3. Let xn = sin
(

nπ
4

)

and yn = cos
(

nπ
4

)

.

(a) Find a (strictly increasing) index sequence nk such that both xnk
and ynk

converge.

Solution: The sequence nk = 8k + 1 is such an index sequence since

sin

(

(8k + 1)π

4

)

= sin
(

2kπ +
π

4

)

=

√
2

2

1



and

cos

(

(8k + 1)π

4

)

= cos
(

2kπ +
π

4

)

=

√
2

2

for all k ≥ 1.

(b) Find a second (strictly increasing) index sequence nk such that both xnk
and ynk

diverge.

Solution: The sequence nk = k is such a sequence.

(c) Find a third (strictly increasing) index sequence nk such that one of xnk
and ynk

converges and the other diverges.

Solution: The sequence nk = 4k is such an example since sin(kπ) = 0 for all k, but
cos(kπ) = (−1)k does not converge.

‘B’ Section

1. (True or False) – If the statement is true give a proof; if it is false give a counterexample.

(a) If xn is a sequence of strictly negative numbers converging to 0, then xn has a strictly
increasing subsequence xnk

.

Solution: This is TRUE. Here is one way to see it, constructing a strictly increasing
subsequence inductively. We start with n1 = 1, so xn1

= x1. This is the base case.
Now assume we have found xn1

< xn2
< . . . < xnk

for 1 = n1 < n2 < · · · < nk. Since
xn → 0, given ε = |xnk

|, there exists N0 in N such that |xn−0| < |xnk
| for all n ≥ N0.

Take nk+1 = max(N0, nk + 1). Then we have |xnk+1
| < |xnk

|, so xnk+1
> xnk

(since
they are both negative) and nk+1 > nk. This shows we can continue to construct a
strictly increasing subsequence.

(b) If xn → 0, then xn contains a strictly increasing subsequence or a strictly decreasing
subsequence (or both).

Solution: This is FALSE. Counterexamples are the constant sequence xn = 0 for all
n ≥ 1, or any “eventually constant” sequence with xn = 0 for all n ≥ n0 for some
n0 ∈ N. (Comment: The statement would be true if we assumed xn 6= 0 for all n (or
even all n ≥ n0 for some n0 ∈ N). Any such sequence contains either infinitely many
positive terms or infinitely many negative terms, or both. If there are infinitely many
negative terms, we get a strictly increasing subsequence of the negative terms by part
(a) of this question. If there are infinitely many strictly positive terms, then there is
a strictly decreasing subsequence, as can be seen by taking negatives, using part (a),
then flipping signs again.)

(c) If xn is a decreasing sequence with a bounded subsequence xnk
, then xn converges.

Solution: This is TRUE. Since the whole sequence is decreasing, so is the subsequence
xnk

. But that subsequence is bounded (below), say by a ∈ R. We claim that the
whole sequence xn is also bounded below by a. To see that, let n be any natural

2



number. Since {nk} is a strictly increasing sequence of natural numbers, it follows
that it is not bounded above. So there is some k such that nk ≥ n. But then since
xn is decreasing and a is a lower bound for the subsequence, a ≤ xnk

≤ xn. It follows
that xn ≥ a for all n, and hence the whole sequence is bounded below. Then {xn}
converges as well by the Monotone Convergence Theorem. (You can also show that
the limit of the whole sequence must be the same as the limit of the subsequence, but
that was not required.)

2. Consider the sequence xn = cos(n) (where we think of n as an angle expressed in
radians).

(a) Prove that xn has a convergent subsequence.

Solution: Since | cos(n)| ≤ 1 for all n ≥ 1, this is a bounded sequence. The statement
to be proved is a direct consequence of the Bolzano-Weierstrass Theorem.

(b) In this part of the question we will show that xn is not convergent, though. Suppose
limn→∞ cos(n) = a for some real number a. Using a trig identity for cos(n + 1) and
considering limn→∞(cos(n + 1) − cos(n)), show that

a(cos(1) − 1)

sin(1)
= lim

n→∞
sin(n).

But then use the sequence limn→∞(sin(n + 1) − sin(n)) to deduce that a = 0, so
limn→∞ cos(n) = limn→∞ sin(n) = 0. But this is a contradiction. Explain why to
conclude the proof.

Solution: The addition formula for cos implies that cos(n + 1) = cos(n) cos(1) −
sin(n) sin(1). If we assume that limn→∞ cos(n) = a, then using parts of the “Big
Theorem” and rearranging algebraically, we see

0 = lim
n→∞

(cos(n + 1) − cos(n))

= lim
n→∞

cos(n)(cos(1) − 1) − lim
n→∞

sin(n) sin(1)

= a(cos(1) − 1) − sin(1) lim
n→∞

sin(n).

Thus,

(1) lim
n→∞

sin(n) =
a(cos(1) − 1)

sin(1)
.

as claimed. Now the addition formula for sin shows

sin(n + 1) = sin(n) cos(1) + cos(n) sin(1)

Taking the limit as n → ∞ on both sides and substituting from (1), we get:

a(cos(1) − 1)

sin(1)
=

a(cos(1) − 1)

sin(1)
cos(1) + a sin(1),
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so
a(cos(1) − 1) = a(cos(1) − 1) cos(1) + a sin2(1),

and hence (because cos2(1) + sin2(1) = 1),

a(cos(1) − 1) = a(1 − cos(1)).

The only way this can be true is if a = 0. But then this implies that

lim
n→∞

sin(n) = 0 = lim
n→∞

cos(n).

But that is impossible because it would say limn→∞ cos2(n) + sin2(n) = 0 by parts
(a) and (b) of the “Big Theorem.” However, we know by the basic identity for the
trigonometric functions that

cos2(n) + sin2(n) = 1

for all n ≥ 1. Hence limn→∞ cos2(n)+ sin2(n) = 1 as well if the two limits exist. This
contradiction shows that limn→∞ cos(n) cannot exist.

3. A cluster point of a sequence xn is a limit of a convergent subsequence xnk
. (See question

1 on the A section for examples of sequences with several different cluster points.)

(a) Show that there exists a sequence xn whose set of cluster points is all of R+ = {x ∈
R | x > 0}. (Hint: Look at the solution for the Extra Credit problem on Exam
1, which shows how to get a sequence containing all the positive rational numbers.
Think rational approximations to decimals to get a subsequence converging to any
given positive a ∈ R. However, note that you will need to be careful to produce an
actual subsequence xnk

with a strictly increasing index sequence nk. In fact, this
example can be “jazzed up” to get a sequence whose set of cluster points consists is
all of R!)

Solution: As shown in the solution to the Extra Credit problem there is a sequence
{xn} whose terms contain all the positive fractions p/q with p, q integers ≥ 1. We
claim that every positive real number is cluster point of that sequence. Note that
because of the “zig-zag” way that sequence is constructed, in the sequence {xn}, all
the fractions p/q with p + q = ℓ occur before those with p + q = ℓ + 1, etc. In other
words, the sum of the numerator and the denominator of xn is an increasing function
of n. Now, if p/q is a positive fraction in lowest terms, then we can also consider the
fractions (pk)/(qk) for all k ≥ 1. These form a subsequence of the xn sequence since
the sum pk + qk = (p + q)k is strictly increasing as a function of k. Hence the indices
nk that give (pk)/(qk) = xnk

must also be strictly increasing. That subsequence
converges to a = p/q since all the fractions (pk)/(qk) reduce to p/q, so it’s actually
a constant sequence. Next, any positive irrational number can be expressed with an
infinite (nonrepeating) decimal expansion

a = dkdk−1 . . . d0.f1f2 · · ·
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(where the di and the fj are the decimal digits). As we saw in class, that expan-
sion is equivalent to a monotone increasing sequence of rational approximations with
denominators that are powers of 10:

dk . . . d0/1, dk . . . d0f1/10, dk . . . d0f1f2/100, . . . .

The notation means something like this: If a =
√

2, for instance, where
√

2 =
1.4142 · · ·, then our sequence of rational approximations is

1/1, 14/10, 141/100, 1414/1000, . . . .

When we add one more decimal digit to get the next term in a sequence approximating
a given positive real a, the corresponding fraction will definitely occur later in the xn

sequence, since the sum of the numerator and the denominator always increases when
we include an additional digit. This shows that we have a subsequence converging to
a. Hence a is a cluster point of the xn sequence.

(b) Show that if am is a convergent sequence of cluster points of a given sequence xn,
then a = limm→∞ am is also a cluster point of the xn sequence.

Solution: We let am be a convergent sequence of cluster points of xn with a =
limm→∞ am. Since each am is a cluster point of the xn sequence, there is a sub-
sequence of xn converging to am. From the subsequence converging to a1, select any
xn1

with |xn1
− a1| < 1. Then from the subsequence converging to a2, select any xn2

with n2 > n1 and |xn2
− a2| < 1

2
, then from the subsequence converging to a3, select

xn3
with |xn3

− a3| < 1

3
and n3 > n2. By an induction argument, we can always

continue this process since for any ℓ ≥ 1, there are infinitely many index values nℓ

for which |xnℓ
− aℓ| < 1

ℓ (all the indices giving terms in the subsequence converging
to aℓ that are distance 1

ℓ or less from aℓ). In this way we get a subsequence {xnℓ
}

(indexed by ℓ ∈ N) with nℓ strictly increasing and |xnℓ
− aℓ| < 1

ℓ for all ℓ ≥ 1. We
claim that the subsequence xnℓ

converges to a. To see this note that given any ε > 0,
there exists ℓ0 ∈ N such that 1

ℓ
< ε

2
and |aℓ − a| < ε

2
for all ℓ ≥ ℓ0. Then by the

triangle inequality, for all ℓ ≥ ℓ0,

|xnℓ
− a| = |xnℓ

− aℓ + aℓ − a| ≤ |xnℓ
− aℓ| + |aℓ − a| <

ε

2
+

ε

2
= ε.

This shows that the subsequence {xnℓ
} converges to a, so a is also a cluster point of

the {xn} sequence.
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