MATH 242 — Principles of Analysis
Solutions for Problem Set 1 — due: Feb. 1

‘A¢ Section

LLlet A={x eR|22-52+6 =0}, B= (0,4 ={ze€R|0<x <4} and
C = {57 | = € R} (Note: C is the range of the function f defined by f(z) = z%5.)

a. Express the set C' as a union of one or more closed intervals [a, ] in R. (Note:

You should use facts from calculus to solve this. Don’t worry that we have not
justified them yet.)
Solution: The function f(z) = 7% has f'(z) = glcz_—jfi This is = 0 at x = *1.
Moreover f'(z) < 0 for x < —1, f'(z) > 0 for -1 < z < 1 and f'(z) < 0
for x > 1. Therefore, at x = —1, f has a local minimum with f(—1) = —1/2.
Similarly, at = 1, f has a local maximum with f(1) = 1/2. We also see
lim, 10 f(x) = 0. Hence f(—1) = —1/2 is also an absolute minimum, and
f(1) = 1/2 is also an absolute maximum. We will show later in the course that
every y with —1/2 <y < 1/2 is also in the range. Hence C' = [—1/2,1/2].

b. Find the sets ANC and BN C.

Solution: Since A = {2,3}, we see that ANC =0 and BNC = (0,1/2].

c. Find the sets BU A and B U C and express as unions of intervals in R.
Solution: We have BU A = (0,4) = B, since A C B. Then by part a, BUC =
(0,4)U[-1/2,1/2] = [-1/2,4).

2. Let B, = {1,1/4,1/9,...,1/n?} for each natural number n > 1. What are N, B,,
and Uy2 B,?

Solution: The union, US2 | B,,, is the set
{1/n% | n>1}.

The intersection, N2, B,,, is the set {1}, since that is the only element in B,, for all
n > 1.

3. Let I,, = [-1/n,1/n] for any n > 1. What are N2, I,, and U2, [,. (Explain your
reasoning intuitively.)
Solution: Note first that I,,, C I,, whenever m > n. This shows that the union is
the same as I; = [—1,1]. The intersection contains only 0. We will see in about a
week how to justify the claim that for any real a > 0, there is some n > 1 such that
1/n < a. Hence a is not in the intersection. The same is true on the negative side:

for any b < 0, there exists some n > 1 such that b < —1/n. Hence b is not in the
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intersection either. This leaves only 0 which does satisfy —1/n < 0 < 1/n for all
n > 1.
4. Let f: R — R be the function defined by f(z) = 2? — 4z + 1.
a. Is f one-to-one? Why or why not?
Solution: By completing the square, we see 22 —4z+1 = (x — 2)? — 3. From this
we can see for instance that f(3) = —2 = f(1). Therefore f is not one-to-one.
We also see that the graph y = f(x) is a shifted parabola with vertex at (2, —3).
This fact can be used to see parts of what we are saying in the later parts of the
problem.
b. Is f onto? Why or why not?
Solution: By the same computations as for part a, we see that f(x) > —3 for all
x. Therefore f is not onto R.
c. If I =(1,3), what is the set f(/)? Explain.
Solution: f has a local and global minimum at f(2) = —3. Hence f((1,3)) =
[—3,—2).
d. If J = (5,6), what is the set f~!(J). Explain.
Solution: We have f(z) = 22 —4x+1 = (x —2)> -3 =5 when z = 2 + /8.
Similarly, f(z) = 6 when z = 243 = —1,5. Hence f~!(J) is the union of the
two intervals f~1(J) = (=1,2 — v/8) U (2 + /8, 5).

‘B’ Section

1. Prove part (f) of Theorem 1.1.3 in the text. These are the De Morgan Laws for
complements.
Solution: We show (AN B)¢ = AU B¢. Let z € (AN B)¢, then = ¢ AN B, which
says ¢ ¢ A or x ¢ B. But then z € A°U B¢, and it follows that (AN B)¢ C A°U B°.
Conversely, if x € A°U B¢ then z ¢ A or x ¢ B. This shows x ¢ AN B, so
x € (AN B)¢, and it follows that A°U B¢ C (AN B)°. Since we have both inclusions,
(AN B)¢ = A°U B°. The second statement (AU B)® = A°N B¢ is proved similarly.

2. Let A and B be arbitrary sets. Does B = A—(A— B), as we might expect if we looked
at the formula through the lens of ordinary algebra? If this is always true, prove it;
if it is not, give both a counterexample (an example where the formula is not true),
and a correct statement with proof.
Solution: This is not true in general as the following counterexample shows. Let
A ={a}andlet B = {b} (witha # b). Then A—B = {a} = A,so A—(A-B) = 0 # B.
The statement that is true here is that A — (A — B) = AN B. To prove this quickly,
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the best way is probably to use the De Morgan Laws from question 1 and other parts
of Theorem 1.1.3 in the text. We have

A—(A-B)=An(A-B)°
= AN (AN B°°
= AN (A°U(B°)°) (by 1.1.3 (f))
=AN(A°UB) (by 1.1.3 (a))

= (ANAYU(ANB)  (by 1.1.3 (e))
=()uU (AN B)
=ANB.

3. Let f: A — B be a function.

a. Let C, D be subsets of A. Is it always true that f(CUD) = f(C)U f(D)? If this
is always true prove it; if it is not, give a counterexample.
Solution: This statement is always true. We can prove it as follows. If z € CUD,
then z € C or x € D. Hence f(x) € f(C) or f(z) € f(D). It follows that
flx) e f(CY)UF(D),so f(CUD) C f(C)Uf(D). Conversely, if y € f(C)U f(D),
then y € f(C) or y € f(D). Soy = f(x) for some xz € C or y = f(z) for some
x € D. It follows that y € f(C U D), so f(C)U f(D) C f(CU D). This shows
the equality.

b. Show that f is onto if and only if f(f~!(E)) = E for all subsets E of B.
Solution: Suppose that f(f~'(F)) = E for all subsets E C B. Let b € B and
E = {b}, then f~Y(E) # () since f(f~'(F)) = E. Thus there is some a € f~!(F),
so f(a) =b. Since this is true for all b € B, f is onto. Conversely, if f is onto, we
must show f(f~1(E)) = E for all subsets E C B. So let E be an arbitrary subset
of B. The definition of the inverse image says f(f~'(E)) C E for all mappings
f (that is, even without the assumption that f is onto). If in addition we know
that f is onto, we have that for all b € F, there exist a € A such that f(a) =b
and hence that those a € f~1(FE). It follows that E C f(f~!(E)) when f is onto.
Hence if f is onto, then f(f~Y(F)) = E.

4. Let f:A— Bandg: B— C.

a. Show that if f and ¢ are both one-to-one, then go f: A — C is also one-to-one.
Solution: Let (go f)(x) = (go f)(y) for some =,y € A. Then g(f(x)) = g(f(y)).
Since g is assumed to be one-to-one, we have f(x) = f(y). But then, because f

is assumed to be one-to-one, x = y. Therefore, g o f is one-to-one.
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b. Is the converse of the statement in part a true? That is, if you know that g o

f is one-to-one, does it follow that f and g are one-to-one? Prove or find a
counterexample.
Solution: This statement is not true. For instance, consider f : {b,c} — {b,c}
defined by f(b) = b and f(c) =c. Alsolet g: {a,b,c} — {b,c} by g(a) =g(b) =b
and g(¢) = ¢. Then go f : {b,c} — {b, ¢} satisfies (go f)(b) =band (go f)(c) =c¢
so g o f is one-to-one. However, g is not one-to-one. (The statement that is true
here is that f must be one-to-one and g must be one-to-one when restricted to
the range of f.)



