
Mathematics 242, section 1 – Principles of Analysis
Solutions For Final Examination – May 15, 2013

I. (20) Let A = {x2 − 2 : −1 < x < 2} and B = {x : |x − 1| < 4}. Find lub(A ∪ B) and
glb(A ∩ B).

Solution: By the definitions, we see A = [−2, 2) and B = (−3, 5). Hence, since A ⊂ B,
A∪B = B = (−3, 5) and A∩B = A = [−2, 2). Hence lub(A∪B) = 5 and glb(A∩B) = −2.

II.

A) (10) State the ε, n0 definition of convergence for a sequence of real numbers.

Solution: The sequence xn converges to c if for all ε > 0 there exist n0 ∈ N such that
|xn − c| < ε for all n ≥ n0.

B) (10) Identify limn→∞
5n

2+1
n2+n+4 .

Solution: Using the limit theorems, we have

lim
n→∞

5n2 + 1

n2 + n + 4
= lim

n→∞

(5n2 + 1) · 1
n2

(n2 + n + 4) · 1
n2

= lim
n→∞

5 + 1
n2

1 + 1
n

+ 4
n2

=
5 + limn→∞

1
n2

1 + limn→∞
1
n

+ limn→∞
4

n2

=
5 + 0

1 + 0 + 0

= 5.

C) (10) Show that your result in part B is correct using the definition.

Solution: Given ε > 0, let n0 > max(20, 6
ε
). (No matter how small ε is, this is possible

because N is not bounded above.) Then for all n ≥ n0, we have

∣

∣

∣

∣

5n2 + 1

n2 + n + 4
− 5

∣

∣

∣

∣

=

∣

∣

∣

∣

−5n − 19

n2 + n + 4

∣

∣

∣

∣

<
5n + 19

n2

Since n ≥ 20, we have 5n + 19 < 6n, so this is

<
6n

n2
=

6

n
≤ 6

n0
< ε.

Hence by the definition, 5n
2+1

n2+n+4
converges to 5.
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III.

A) (15) Show that if xn is a monotone increasing sequence of real numbers that is bounded
above, then xn converges to some real number.

Solution: The set X = {xn} is bounded above in R. Hence the LUB axiom implies
that it has a least upper bound c. Given any ε > 0, c − ε is not an unpper bound
for X , therefore there exists some n0 such that c − ε < xn0

≤ c. But the sequence is
monotone increasing so c− ε < xn0

≤ xn ≤ c for all n ≥ n0. That implies |xn − c| < ε

for all n ≥ n0, and hence xn → c by the definition.

B) (10) True/False and prove/give a reason: The sequence

xn =

{

−1 + 1
n2 if n is a prime integer > 1

1 − 1
n2 if n is not prime

has convergent subsequences.

Solution: This is TRUE. From the definition, xn < 1 for all n and xn > −1 for all n.
Since {xn} is a bounded sequence, the Bolzano-Weierstrass theorem implies it must
have convergent subsequences. (In fact, we can also see directly from the above that
the subsequences for nk = kth prime number and nk = 2k, k ≥ 1 are convergent.)

C) True/False and prove/give a reason: The infinite “continued radical”

√

√

√

√

3 +

√

3 +

√

3 +

√

3 +
√

3 + · · ·

represents a finite real number. (Hint: If so, that number would be the limit of a
sequence defined by x1 =

√
3 and xn =

√
3 + xn−1 for all n ≥ 2.)

Solution: This is TRUE. First we notice that in the sequence described in the Hint,

x2 =

√

3 +
√

3

x3 =

√

3 +

√

3 +
√

3,

etc. So as n → ∞, if the sequence xn converges, it converges to the expression defined
by the infinite “continued radical.” We claim next the sequence is bounded below by
0 (clear) and above by 3. The second part requires some proof, but we can argue that
xn < 3 for all n by induction as follows. The base case is x1 =

√
3 < 3. Assuming

xk < 3, then we have xk+1 =
√

3 + xk <
√

3 + 3 =
√

6 < 3. Hence xn < 3 for all
n. Finally, we show by induction again that xn is monotone increasing. Note that

x2 =
√

3 +
√

3 >
√

3 = x1 since x2
2 = 3 +

√
3 > 3 = x2

1. Assuming xk+1 > xk, then
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xk+2 =
√

3 + xk+1 >
√

3 + xk = xk+1 also. Hence the monotone convergence theorem
(part A) implies that xn → a for some real number a < 3. In fact, taking the limit
on both sides of xn+1 =

√
3 + xn, we can see that a must satisfy

a =
√

3 + a ⇒ a2 − a − 3 = 0

By the quadratic formula,

a =
1 +

√
13

2
.
= 2.302775638.

IV.
A) (15) Let

f(x) =
{

x + 3 if x is a rational number
−x2 + 3 if x is an irrational number

Is f continuous at x = 0? Why or why not?

Solution: Yes, f(x) is continuous at 0. To see this, let ε > 0, and δ < min(ε,
√

ε). If
|x| < δ and x is rational then we have

|f(x)− f(0)| = |x + 3 − 3| = |x| < ε,

while if x is irrational we have

|f(x)− f(0)| = | − x2 + 3 − 3| = |x|2 < (
√

ε)2 = ε.

Therefore f is continuous at 0.

B) (25) State and prove the Intermediate Value Theorem. (You may assume as known
the theorem that if f is continuous at c and xn → c is a sequence contained in the
domain of f , then f(xn) → f(c)).

Solution: The IVT in the form we proved first says that if f is continuous on [a, b]
with f(a) 6= f(b), and k is any number between f(a) and f(b), then there exists a
c ∈ [a, b] such that f(c) = k. We proved this as follows. If k = f(a) or k = f(b), then
there is nothing to prove. Hence we must consider the case that k is strictly between
the two values f(a) and f(b). Suppose, for instance, that f(a) < k < f(b). (The other
case f(b) < k < f(a) can be proved similarly.) Consider

S = {x ∈ [a, b] | f(x) ≤ k}

Then S is not empty since for instance a ∈ S. S is also bounded since it is a subset
of [a, b]. Hence the LUB axiom implies that c = lub(S) exists in R. We claim that
f(c) = k. First note that c < b since f(b) > k. Hence if we let xn → c with
c ≤ xn ≤ b, we will have f(xn) > k for all n, and hence (since f is continuous at c,

3



limn→∞ f(xn) = f(c) ≥ k. On the other hand, since c = lub(S), if ε > 0, then there
will exist x ∈ S with c − ε < x ≤ c. Apply this for each ε = 1

n
for n ∈ N. We get a a

sequence x′
n ∈ S with x′

n → c. Hence limn→∞ f(x′
n) = f(c) ≤ k since f(x′

n) ≤ k for
all n. The two inequalities show that f(c) = k.

V.
A) (15) Using the limit definition of the derivative, compute f ′(c) for f(x) = 1

(x+3)2 at a

general c 6= −3.

Solution: We have

f ′(c) = lim
x→c

f(x) − f(c)

x − c

= lim
x→c

1
(x+3)2 − 1

(c+3)2

x − c

= lim
x→c

(c + 3)2 − (x + 3)2

(x + 3)2(c + 3)2(x − c)

= lim
x→c

c2 − x2 + 6(c − x)

(x + 3)2(c + 3)2(x − c)

= lim
x→c

−c − x − 6

(x + 3)2(c + 3)2

=
−2

(c + 3)3

(Note: It is not permissible to use L’Hopital’s Rule to compute this limit because that
requires you to use a derivative formula to derive f ′(x) = −2

(x+3)3
. Using the derivative

rule to compute the derivative by the definition is an example of circular reasoning!)
B) (10) What theorem guarantees that

F (x) =

∫

x

1

1

(t + 3)2
dt

is differentiable at x = 2? Exactly why does it apply here? What does it say about
F ′(2)?

Solution: The theorem is the first part of the Fundamental Theorem of Calculus. It
applies because the function f(x) = 1

(x+3)2 is continuous on the closed interval [1, a]

for all a > 2. It implies F ′(2) = f(2) = 1
25 .

C) (10) Show that if f(x) = e
x+e

−x

2
, then for every real k, there exists a solution c of the

equation f ′(c) = e
c−e

−c

2 = k.

Solution: Note that f ′(x) = e
x−e

−x

2
exists and is continuous at all x ∈ R. This

function satisfies limx→+∞ f ′(x) = +∞ and limx→−∞ f ′(x) = −∞. So whatever the
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value k, we can find an interval [−a, a] such that f ′(−a) < k < f ′(a). On the interval
[−a, a], f ′ is continuous, and then the Intermediate Value Theorem implies there is
some c ∈ [−a, a] such that f ′(c) = k.

Alternatively, it would also be possible to solve the equation e
c−e

−c

2 = k explicitly like
this:

ec − e−c

2
= k ⇔ e2c − 2kec − 1 = 0

⇔ ec =
2k +

√
4k2 + 4

2
(by the quadratic formula)

⇔ ec = k +
√

k2 + 1

⇔ c = ln(k +
√

k2 + 1)

The function g(x) = ln(x +
√

x2 + 1) is also known as the inverse hyperbolic sine

function, since f ′(x) = e
x−e

−x

2 is the hyperbolic sine.

VI. (20) In this question, you may use the summation formulas:

n
∑

i=1

1 = n

n
∑

i=1

i =
n(n + 1)

2

n
∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

Show that f(x) = x2 + x is integrable on [a, b] = [0, 2] by considering upper and lower

sums for f and determine the value of
∫ 2

0
x2 + x dx.

Solution: f ′(x) = 2x + 1 > 0 for all x ∈ [0, 2]. Therefore, f is increasing on [0, 2] and as
in the proof of the integrability of all monotone functions, if Pn is the regular partition of
[0, 2] into n equal subintervals,

U(f,Pn) − L(f,Pn) = (f(2) − f(0))
(2 − 0)

n
=

12

n
.

If ε > 0 is given and n > 12
ε

, then

U(f,Pn) − L(f,Pn) < ε.

The limit of the upper sum for Pn as n → ∞ is

∫ 2

0

x2 + x dx = lim
n→∞

n
∑

i=1

(

(

2i

n

)2

+
2i

n

)

2

n

= lim
n→∞

(

8

n3

n
∑

i=1

i2 +
4

n2

n
∑

i=1

i

)

= lim
n→∞

(

8

n3
· n(n + 1)(2n + 1)

6
+

4

n2
· n(n + 1)

2

)

=
8

3
+ 2 =

14

3
.
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Check: By Part 2 of the FTC:

∫ 2

0

x2 + x dx =
x3

3
+

x2

2

∣

∣

∣

∣

2

0

=
8

3
+ 2 =

14

3
.

VII.
A) (5) State the definition of convergence for an infinite series

∑∞
n=1 an.

Solution: The infinite series
∑∞

n=1 an converges to S ∈ R if the sequence of partial

sums sk =
∑

k

n=1 an converges to S (as a sequence).

B) (15) For which x ∈ R does the power series

∞
∑

n=1

3nxn

n7n

converge? (Apply the Ratio Test and test the series at the endpoints of your interval
separately.)

Solution: We have

lim
n→∞

∣

∣

∣

∣

3n+1xn+1

(n + 1)7n+1
· n7n

3nxn

∣

∣

∣

∣

= lim
n→∞

3n

7(n + 1)
|x| =

3|x|
7

.

By the Ratio Test, the series converges absolutely whenever 3|x|
7

< 1, or |x| < 7
3
, and it

diverges when |x| > 7
3 . At x = ±7

3 , we have the following. If x = 7
3 , we substitute and

simplify to obtain
∑∞

n=1
1
n
. This is the harmonic series, which diverges. If x = −7

3
, we

substitute and simplify to obtain
∑∞

n=1
(−1)n

n
. This series converges by the Alternating

Series Test. Therefore the series converges at all x ∈
[

−7
3 , 7

3

)

(and only for those x).

Extra Credit (20) Prove the result mentioned in part B of question IV above: if f is
continuous at c and xn → c is a sequence contained in the domain of f , then f(xn) → f(c).

Solution: Since f is continuous at c, given any ε > 0, there is some δ > 0 such that

(1) |f(x) − f(c)| < ε

for all x with |x − c| < δ. Then, since xn → c, given that δ, there is an n0 such that
|xn − c| < δ for all n ≥ n0. But then substituting x = xn from the sequence into the
inequality (1) we get |f(xn) − f(c)| < ε for all n ≥ n0. This implies that the sequence
f(xn) → f(c).
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