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In Quaestiones Convivales, 718 e-f (Book 8, Chapter 2, Section 1) Plutarch

presents a conversation between the grammarian Diogenianus and the Spar-

tan Tyndares concerning the role of the study of geometry in Plato’s thought.

Diogenianus begins this phase of the conversation by raising the question

why Plato asserted that “God always geometrizes.” He also says he is not

aware of any specific text where Plato said precisely that, though he thinks

it sounds like something Plato would have said. Tyndares replies that there

is no great mystery there and asks Diogenianus whether it was not true that

Plato had often written that geometry is “ἀποσπῶσαν ἡμᾶς προσισχομένους

τῇ αἰσθήσει καὶ ἀποστρέφουσαν ἐπὶ τὴν νοητὴν καὶ ἀίδιον φύσιν, ἧς θέα τέλος

ἐστὶ φιλοσοφίας ... .”1 After some elaboration of these points, Tyndares

presents an interesting piece of evidence concerning this aspect of Plato’s

thought: “δίο καὶ Πλάτων αὐτὸς ἐμέμψατο τοὺς περὶ Εὔδοξον καὶ Ἀρχύταν καὶ

Μέναιχμον εἰς ὀργανικὰς καὶ μηχανικὰς κατασκευὰς τὸν τοῦ στερεοῦ διπλασι-

ασμὸν ἀπαγεῖν ἐπιχειροῦντας ... ”2 As we will see, this passage in Plutarch

1All Greek quotations are from the Loeb Classical Library/Perseus text of Plutarch’s
Quaestiones Convivales, [QC]. My translations will be given in footnotes like this one:
“... taking us away from the sensible and turning us back to the eternal nature we can
perceive with our minds, whose contemplation is the goal of philosophy ... .” Tyndares is
apparently thinking of passages like 527b in Book VII of the Republic, where Plato has
Socrates say in reference to geometry, “... it is the knowledge of that which always is ... it
would tend to draw the soul to truth, and would be productive of a philosophical attitude
of mind, directing upward the faculties that are now wrongly turned downward” (English
translation from [P], p. 758).

2“Therefore even Plato himself strongly criticized Eudoxus, Archytas, and Menaech-
mus” (or possibly “those around Eudoxus, Archytas, and Menaechmus”) “for attempting
to reduce the duplication of the cube to mechanical constructions with instruments ... ”
Plutarch gives a second, largely parallel account of this criticism in Chapter 14 of his
life of Marcellus, in the context of a discussion of the geometrical and mechanical work
of Archimedes and the tradition that King Hiero of Syracuse persuaded him to take up
mechanics to design engines of war in defence of his native city-state. Marcellus was, of
course, the commmander of the Roman forces in the siege of Syracuse in 212 BCE dur-
ing which Archimedes was killed. In that passage, the ancient Greek distinction between
mathematics and mechanics is laid out in even greater detail, and Eudoxus and Archytas
are cited as originators of famous mechanical techniques.
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provides a fascinating, but also ultimately somewhat cryptic, sidelight on a

key episode in the history of Greek mathematics.

Eudoxus of Cnidus (409–356 BCE), Archytas of Tarentum (428–347 BCE),

and Menaechmus of Alopeconnesus (380–320 BCE) were three of the most

accomplished Greek mathematicians active in the 4th century BCE. Archy-

tas is often identified as a Pythagorean and there are traditions that Eudoxus

was a pupil of his and Menaechmus was a pupil of Eudoxus. All three were

associated with Plato and his Academy in Athens in some way.3

The duplication of the cube was a geometrical problem asking for the

construction of the side of a cube whose volume would be twice the volume

of a given cube. Various traditions deal with the genesis of this problem.

One says that seeking direction in order to stem the progress of a plague

on their island (or perhaps political conflicts; different versions of the story

differ on this point), the people of Delos consulted the oracle at Delphi,

whereupon the Pythia replied that they must find a way to double the size of

an altar of Apollo.4 When they were unable to do this themselves, the Delians

supposedly consulted Plato and the geometers at his Academy to find the

required geometric construction; for this reason the duplication of the cube is

often called the “Delian problem.” Plutarch himself in The E at Delphi says

that the underlying point of the story was that the god was commanding the

Greeks to apply themselves to geometry.5 However, this version of the story

is probably fanciful (at least as the origin of the problem–the chronology is

clearly wrong, for one thing, since as we will see presently there was work on

3We have much of this from sources such as Proclus, [P], pp. 54–56, though the fact
that Proclus is writing roughly 800 years after this period raises the question of how
reliable his information is.

4A somewhat parallel story about King Minos seeking how to double the size of a tomb
also appears in a letter of Eratosthenes to King Ptolemy III of Egypt that will be discussed
below. See [H], p. 245.

5[DeE], Chapter 6, 386E.
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the question somewhat before the time of Plato (428 – 348 BCE)). However,

there is no doubt that the duplication of the cube was one of a series of

geometric construction problems that stimulated much of the development

of Greek mathematics throughout the Classical period.6

Tyndares continues in a somewhat technical vein, “ὥσπερ πειρωμένους δι΄

ἀλόγου δύο μέσας ἀνάλογον, ᾗ παρείκοι, λαβεῖν ... ”.7 It is quite interesting

that Tyndares seems to be assuming that all of his listeners would be familiar

with this terminology and the episode in the history of geometry to which

he is referring.

For a full understanding of this, and of Plato’s supposed objection to

the work of Eudoxus, Archytas, and Menaechmus, we need to introduce an

important piece of progress that had been made toward the solution of the

duplication of the cube problem earlier and definitely before the time of Plato,

by Hippocrates of Chios (ca. 470–ca. 410 BCE). Given two line segments

AB and GH, we say line segments CD and EF are two mean proportionals

in continued proportion8 between AB and GH if their lengths satisfy:

AB

CD
=

CD

EF
=

EF

GH
. (1)

Hippocrates’ contribution was the realization that if we start with

GH = 2AB,

6The others were the quadrature of the circle (that is, the problem of constructing a
square equal in area to a given circle), and the trisection of a general angle. Wilbur Knorr
examined this tradition of geometric problems in detail in [K].

7I propose this reading: “just as though they were trying, in an unreasoning way, to
take two mean proportionals in continued proportion any way that they might ... ”. The
δι΄ ἀλόγου is hard to translate and may not even be what Plutarch originally wrote. This
specific phrase has a rather large number of textual issues as evidenced by the variant
readings discussed in the Loeb Classical Library/Perseus version of the Plutarch text.

8In the Plutarch passage, this appears in the accusative as δύο μέσας ἀνάλογον. The
ἀνάλογον seems to be essentially equivalent to ἀνὰ λόγον, and that is conventionally trans-
lated as “in continued proportion.”
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then the construction of two mean proportionals as in (1) would solve the

problem of the duplication of the cube. The idea is straightforward: If

AB

CD
=

CD

EF
=

EF

2AB
,

then some simple algebra (which the Greeks would have emulated with par-

allel manipulation of proportions) shows

CD3 = 2AB3.

In other words, if AB is the side of the original cube, then CD is the side

of the cube with twice the volume. With this observation, Hippocrates did

not give a full solution for the duplication of the cube, but he did provide a

way to attack the problem. Almost all later work took his reduction to the

construction of the two mean proportionals as its starting point.

Tyndares concludes his summary of Plato’s criticism by claiming that

mechanical procedures with tools would have the effect “ἀπόλλυσθαι γὰρ ...

καί διαφείρεσθαι τὸ γεωμετρίας ἀγαθὸν αὖθις ἐπὶ τὰ αἰσθητὰ παλινδρομούσης

καὶ μὴ φερομένης ἄνω μηδ΄ ἀντιλαμβανομένης τῶν ἀίδιων καὶ ἀσωμάτων εἰκόνων

πρὸς αἶσπερ ὢν ὁ θεὸς ἀεὶ θεός ἐστι.”9 Tyndares is saying that Plato criticized

the mechanical nature of the solutions proposed by Eudoxus, Archytas, and

Menaechmus because they in effect subverted what he saw as the true purpose

of geometry: its raison d’être was not merely to solve problems “by any

means necessary,” but rather to lead the soul to the contemplation of eternal

truth.10

9“... to destroy utterly the good of geometry and again turn it around to things of
the senses, not above to the eternal and incorporeal forms, being in which, God is always
God.”

10But in his thought-provoking study of the Greek work on these construction problems,
[K], Wilbur Knorr has argued in effect that by this period Greek mathematics had dis-
tanced itself from the sort of philosophical or religious underpinning that Tyndares says
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Plutarch does not include any discussion of what Eudoxus, Archytas, or

Menaechmus actually did to to find the two mean proportionals between two

given line segments. However, historical accounts of the work on this problem

including information about their approaches have survived in ancient sources

– chiefly a summary in a much later commentary on Archimedes’ On the

Sphere and the Cylinder by Eutocius of Ascalon (ca. 480 – ca. 540 CE), in

which Eutocius surveys a wide selection of different solutions to the problem

of finding the two mean proportionals.11 Eutocius includes in his account

a letter to King Ptolemy III of Egypt by Eratosthenes of Cyrene (276 –

194 BCE) with a summary of earlier work and Eratosthenes’ own, definitely

mechanical and tool-based, solution making use of an instrument he dubbed

the mesolabe, or “mean-taker.”12

I will present the main ideas behind what Eutocius says about the ap-

proaches of Archytas and Menaechmus in order to shed some additional light

on the content of the Plutarch passage. The solution by Eudoxus is not pre-

sented in sufficient detail by Eutocius for us to form a definitive impression

of how it connects with what Plutarch writes.

To begin, we should indicate how the adjectives μηχανικός or ὀργανικός

might apply to geometric constructions. On the face of it, ὀργανικός, in

the sense of instrument-based, or tool-based, is clearer. For the adjective

ὀργανικός to apply, I believe some physical device such as the mesolabe of

Plato claimed for it and was already very close to a modern research program, in which
the goal often is indeed to solve problems by whatever means are necessary. This view is
not universal among historians of Greek mathematics.

11The occasion for this was the fact that Archimedes assumed the construction was
possible in some way in the proof of the first proposition in Book II of On the Sphere and
the Cylinder, but he did not provide any explanation.

12The purpose of the letter is essentially to claim the superiority of Eratosthenes’ me-
chanical method for practical use. It was dismissed as a later forgery by some 19th and
early 20th century historians, but more recently, the tide of opinion has seemingly changed
and sources such as [K] argue forcefully that it should be accepted as authentic.
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Eratosthenes must be involved in the construction. But even there, there

is a slightly subtle point. The Greeks, even though they almost certainly

used physical straightedges to draw lines and physical compasses to draw

circles while constructing diagrams, were apparently also happy to consider

those tools in idealized versions that were constructs of the mind and not

dependent on the senses.13 What counts as μηχανικός is unfortuately even

less clear. For the purposes of this discussion, one possibility is a construction

that has some element of physical or imagined motion. Note that any sort of

change over time in a figure would itself violate Plato’s vision of the eternal

and unchanging nature of the world of the forms. Another sort of violation

might occur in a construction that involves some sort of measurement against

a fixed distance or area scale.14

The approach by Archytas is essentially based on a geometric configu-

ration in which it can be seen that two mean proportionals in continued

proportion have been found. We will call these Archytas configurations for

simplicity. One of these is shown in Figure 1. Here AEB and ADC are two

semicircles tangent at A, and BD is tangent to the smaller semicircle at B.

It follows from some standard geometric facts that ∆BAE, ∆CAD, ∆DBE,

∆CDB and ∆DAB are all similar. This follows because the angles 6 AEB

and 6 ADC are inscribed in semicircles, hence right angles, and hence EB

and DC are parallel. From this we can see immediately that taking ratios of

13The first three postulates in Book I of the Elements of Euclid (ca. 300 BCE) describe
their uses and properties in abstract terms. In particular, the idealized straightedge can
be used to draw lines, but not to measure distances; it has no distance scale like a modern
ruler. Moreover, the idealized Euclidean compass can be used to draw circles, but not to
measure or transfer distances.

14Both of these sorts of operations are clearly useful and even necessary in what we
would today call applied mathematics, and it is exactly that aspect of Archimedes’ work
that Plutarch discusses in the passage from the Life of Marcellus mentioned above.
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Figure 1: An Archytas configuration

longer sides to hypotenuses in three of these triangles,

AE

AB
=

AB

AD
=

AD

AC
.

In other words, AB and AD are two mean proportionals in continued pro-

portion between AE and AC.

But now, we must address the question of how such a configuration would

be constructed given the lengths AE < AC. The issue is that although we

can always take the segment AC as the diameter of the larger semicircle,

there is no direct way to construct the smaller semicircle, the perpendicular

BD to AC and the point E without some sort of continuity argument or ap-

proximation process. A modern explanation might run as follows. Consider

the situation in Figure 2.

Given the lengths AE < AC, the possible locations of the point E lie

on an arc of the circle with center at A and radius equal to a specified

length. One such arc is shown in blue in Figure 2. Through each point E

on that arc, there is exactly one semicircle tangent at A to the semicircle
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Figure 2: A failed attempted construction of an Archytas configuration

with diameter AC, shown in green in the figure. The line through A,E

meets the outer semicircle at D and B is the foot of the perpendicular from

D to AC. However, note that with this choice of E, DB does not meet

the smaller semicircle at all. By rotating the segment AE about A and

increasing the angle 6 CAE, we would eventually find that the corresponding

BD cut through the corresponding smaller semicircle. Hence there must be

some point E on the blue arc that yields an Archytas configuration as in

Figure 1, by continuity. However, as we have described it, a naive process

of finding that point might involve exactly the sort of resort to “eyeballing”

or use of the senses that Tyndares says Plato criticized in our passage from

Plutarch!15

What Archytas actually did here has been interpreted in a number of dif-

15We can also easily locate such a point using modern coordinate geometry, trigonome-
try, and numerical root finding. But needless to say, all of that is well beyond the scope
of Greek mathematics.
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ferent ways by different modern readers. One tradition16 interprets Archytas’

solution as a bold foray into solid geometry whereby a suitable point like our

E in Figure 1 is found by the intersection of three different surfaces in three

dimensions (a cylinder, a cone and the surface of revolution generated by

rotating the semicircle with diameter AC about the tangent line at A). Very

recently, a new interpretation17 has been presented whereby the Archytas

configuration is found by rotating one copy of the semicircle around A in the

plane while keeping the other one fixed. In either our simple presentation,

or the kinematic description of the three surfaces in three dimensions, or the

new reading of Archytas’ construction from [M], there is definitely a mechan-

ical aspect that seems to agree well with Plato’s reported characterization of

the construction. Either way, Archytas is clearly willing to allow the use of

mechanical operations and/or the senses of the geometer in this construction.

The approach by Menaechmus is somewhat more problematic. This can

be described (very anachronistically) as follows.18 Given line segments of

lengths a, b, finding the two mean proportionals in continued proportion

means finding x, y to satisfy:

a

x
=

x

y
=

y

b
.

Hence, cross-multiplying and interpreting the resulting equations via coordi-

nate geometry, we see the solution will come from the point of intersection of

the parabola ay = x2 and the hyperbola xy = ab. For this reason, Menaech-

mus has often been credited with initiating the study of the conic sections,

later taken up and elaborated by Euclid, Archimedes, Apollonius, and other

16See for instance [H], pp. 246–249.
17See [M].
18This is essentially the presentation given in [H], pp. 252–255, although Heath also

explains how the Greeks would have understood this via proportions.
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Greek mathematicians.19

One of the mysterious aspects of the Platonic criticism recounted by Tyn-

dares in our Plutarch passage is how the adjectives μηχανικός or ὀργανικός

might apply to what Menaechmus did here. While it is true that the conic

sections apart from the circle cannot be constructed as whole curves using

only the Euclidean tools–the compass and straightedge–we do not know from

any direct evidence that Plato was thinking of restricting the acceptable ways

of making geometric constructions in precisely that way.20

In a final, decidedly odd, aspect of this story, Eutocius also gives a con-

struction of the two mean proportionals in continued proportion that he

ascribes to Plato himself. But that is by far the most mechanical and tool-

based of all the solutions he describes in that it requires the use of a frame

something like two “t-squares” joined along one edge. The configuration

containing the two mean proportionals is found by maneuvering the device

19It must be said that the evidence that Menaechmus did any more than to stimu-
late those later developments on conic sections with his work on the Delian problem is
somewhat flimsy. None of his own writings have survived and the discussion of his work
in Eutocius uses the terminology for conic sections introduced much after the time of
Menaechmus himself by Apollonius of Perga (262–190 BCE). We may surmise that either
Eutocius himself or a source he consulted reworked Menaechmus’ presentation in the light
of later developments. Another piece of evidence is the epigram of Eratosthenes on the
duplication of the cube that concludes the letter to Ptolemy III mentioned above. This
includes an injunction not to “ ... cut the cones in the triads of Menaechmus ... ” to
obtain a solution ([H], p. 246).

20Nevertheless, Steele argues in [S] that Plato’s criticism of Eudoxus, Archytas, and
Menaechmus recounted in this passage from Plutarch was a major contributing factor
to the later, mistaken, notion that in Greek geometric constructions, only the compass
and straightedge were acceptable tools. In fact Pappus of Alexandria (ca. 290–ca. 350
CE) gives two parallel statements of a classification of construction problems into three
types depending on what sorts of auxiliary curves beyond the lines and circles that can be
constructed with the Euclidean tools are required in Books III and IV of his Συναγωγή.
Whether or not the duplication of the cube, the quadrature of the circle, and the trisection
of a general angle could be accomplished using only the Euclidean tools remained an open
question until the work of P. Wantzel and others in the 19th century CE. It is now known
that none of these constructions is possible under those restrictive conditions. Many
undergraduate mathematics majors learn proofs of these facts in abstract algebra courses.
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until one point is found to coincide with one endpoint of one of the given seg-

ments.21 A sort of νεῦσις, or limiting process, requring input from the senses

of the geometer is the crucial component. As Knorr says, “one is astounded

at the flexibility of the traditions which on the one hand attribute such a

mechanism to Plato, yet on the other hand portray him as the defender of

the purity of geometry and the sharp critic of his colleagues for their use of

mechanical procedures in geometric studies.”22

In conclusion, we can say that Plutarch has seemingly preserved a largely

accurate picture of Plato’s thinking, certainly more accurate than some of

the mathematical traditions preserved in Eutocius’ commentary. But it is

also clear from both from the work of Archytas and Menaechmus and from

the later work of Archimedes, Apollonius and others that if something like

Plato’s criticism of the geometers in his circle actually happened at this

point in history, its effect on the rapidly-developing state of knowledge in

Greek mathematics was rather minimal. Mechanical techniques were finding

their way into the “mainstream mathematics” of the Hellenistic and later

periods.23 While it drew on philosophy for its norms of logical rigor, math-

ematics had in essence emerged as an independent subject in its own right

by the time of Eudoxus, Archytas, and Menaechmus. Plato’s ideas about

what should be its proper methods or goals clearly were not the final word

in a community of scholars caught up in the midst of an eminently successful

21There is a good diagram of this on page 58 of [K].
22[K], p. 59
23A celebrated example of this is Archimedes’ Method of Mechanical Theorems, which

gives a systematic procedure, based on mechanics, to discover geometric area and volume
formulas. Archimedes uses dissection procedures akin to the subdivisions used in modern
integral calculus, combined with an idealized balance beam. Modern mathematicians are
even happy to consider his arguments as complete proofs, although Archimedes himself
had scruples about that point. However, this is certainly not the only such example. For
instance, Heron of Alexandria (ca. 10 – ca. 70 CE) gives another different solution of the
duplication of the cube in his Βελοποιίκα, a treatise on the design of artillery engines(!)

12



ongoing research enterprise.
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[M] Masià, R., “A new reading of Archytas’ doubling of the cube and its

implications,” Arch. Hist. Exact Sci. 70 (2016), 175–204.

[P] Plato, The Collected Dialogues, Hamilton, E. and Cairns, H. eds. Bollin-

gen Series LXXI, Princeton: Princeton University Press, 1961.

[Pr] Proclus, A Commentary on the First Book of Euclid’s Elements, Mor-

row, G. translator, Princeton: Princeton University Press, 1970.

[QC] Plutarch, Questiones Convivales, at

http://data.perseus.org/texts:um:cts:greekLit:tlg0007.tlg112.

perseus-grc1, referenced 11/25/2016.
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