Computations
> restart;
> A := [1,0];
> P:=[cos(theta),sin(theta)];
> with(Groebner):
> Id:=[(x-1)^2+y^2-6,(x-ct)^2+(y-st)^2-4,ct^2+st^2-1];
> G:=gbasis(Id,plex(x,y,ct,st));
> ylist:=[solve(G[3],y)];
> for i to 2 do xlist[i]:=solve(subs(y=ylist[i],G[4]),x): od:
> R:=[subs({ct = cos(theta),st = sin(theta)},xlist[1]),subs({ct = cos(theta),st = sin(theta)},ylist[1])]:
> S:=[subs({ct = cos(theta),st = sin(theta)},xlist[2]),subs({ct = cos(theta),st = sin(theta)},ylist[2])]:
> with(plots): with(linalg):
> OA:=scalarmul(A,t):
> LOA:=[OA[1],OA[2],t=0..1]:
> OP:=scalarmul(P,t):
> LOP:=[OP[1],OP[2],t=0..1]:
> AR:=matadd(scalarmul(A,t),scalarmul(R,1-t)):
> LAR:=[AR[1],AR[2],t=0..1]:
> AS:=matadd(scalarmul(A,t),scalarmul(S,1-t)):
> LAS:=[AS[1],AS[2],t=0..1]:
> PR:=matadd(scalarmul(P,t),scalarmul(R,1-t)):
> LPR:=[PR[1],PR[2],t=0..1]:
> PS:=matadd(scalarmul(P,t),scalarmul(S,1-t)):
> LPS:=[PS[1],PS[2],t=0..1]:
> Q:=matadd(S,R-P):
> QR:=matadd(scalarmul(Q,t),scalarmul(R,1-t)):
> LQR:=[QR[1],QR[2],t=0..1]:
> QS:=matadd(scalarmul(Q,t),scalarmul(S,1-t)):
> LQS:=[QS[1],QS[2],t=0..1]: