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Abstract

One example of a widely used modern day public-key cryptosystem
is the RSA system, which relies on the difficulty of factoring large inte-
gers. In the 1990’s Fellows and Koblitz and proposed a different type of
public-key cryptosystem, known as“Polly Cracker” systems, based on
the difficulty of computing Gröbner bases for certain polynomial ide-
als. However, it has been found that those systems are susceptible to
certain types of attacks and their security is questionable. To counter
this vulnerability, more recently, T. Rai (among others) has proposed
similar cryptosystems based on Gröbner bases of certain two-sided ide-
als in the free associative algebra R = K〈x1, . . . , xn〉, whose elements
are polynomials in noncommuting variables with coefficients in a finite
field K. Unlike the commutative ring K[x1, . . . , xn], R has ideals all
of whose Gröbner bases are infinite, so computing a full Gröbner basis
definitely infeasible. Using the GAP computer algebra system, we im-
plement a prototype of one of these cryptosystems. However, we also
show that a certain basic form of Rai’s noncommutative Polly Cracker
system is susceptible to a different type of attack. If the polynomials
constituting the public key are formed in a particular way, we show
that it is actually very easy to solve for the coefficients in the polyno-
mial constituting the private key in Rai’s system, using a simple and
fast commutative Gröbner basis computation.

1 Introduction

Cryptography can be defined as the science concerned with protecting the
secrecy of information and the security of communications [1]. An example
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of a widely used modern day public-key cryptosystem is the RSA system,
which relies on the difficulty of factoring large integers. Another type of
public-key cryptosystem is a Gröbner basis cryptosystem, whose security
depends on the difficulty of computing Gröbner bases. In [1], Rai studies
the noncommutative version of these Gröbner basis cryptosystems, as well as
the algebraic structures in which they rely. Motivated by the fact that some
ideals of noncommutative polynomial rings do not have finite Gröbner basis
under any admissible order, we paralleled Rai’s work on a noncommutative
Gröbner basis cryptosystem.

Essential for our research was the implementation of the cryptosystem
using the GAP computational algebra software. As an extension to the
GBNP noncommutative algebra package, we programmed a series of tools
that the original package lacked, one of these being the noncommutative ver-
sion of the division algorithm using the length-lex term order. Once we had
this set of tools, we proceeded to study the weaknesses of the cryptosystem
proposed by Rai. We found that the main weakness of the cryptsystem was
that reduction of the encrypted message by the public key usually yielded
the original message. We propose a technique that prevents this from hap-
pening. Finally, we show that Rai’s cryptosystem is susceptible to an attack
via the public key polynomials, and we describe the general procedure of
the attack.

2 Noncommutative Gröbner Basis Theory

Let Σ = {x1, . . . , xn} be a finite alphabet, and let Σ∗ be the set of finite
words generated by Σ. The elements of Σ∗ are of the form u = xi1 . . . xis ,
where i1, . . . , is ∈ {1, . . . , n}. Let λ be the empty word and let multiplication
be given by concatenation. Note that this product is not commutative. For
a finite field K, we define the free associative algebra in n non-commuting
variables over a finite field K, R = K〈x1, . . . xn〉, to be the set of formal
sums

∑t
i=1 ciui, with ci ∈ K and ui ∈ Σ∗, along with polynomial addition

and multiplication.
An admissible term order > on Σ∗ is a total order such that:

1. If u < v, then xuy < xvy ∀u, v, x, y ∈ Σ∗

2. > is a well-ordering.

Examples of admissible term orders are the length-lexicographic and the
total lexicographic order.

2



Given a term order > and f =
∑t

i=1 ciui ∈ K〈x1, . . . , xn〉, with ci ∈
K \{0}, we define the leading term of f , denoted LT (f), to be ui ocurring
in f such that ui ≥ uj ∀uj ocurring in f . We define the leading coefficient
of f , denoted LC(f), to be the coefficient of LT (f).

For X ⊆ K 〈x1, . . . , xn〉, we write

LT (X) = {u ∈ Σ∗ : u = LT (f) for some f ∈ X} ,

and NonLT (X) = Σ∗ − LT (X).
Let R = K 〈x1, . . . , xn〉 be the free associative algebra in n non-commuting

variables over a finite field K. A subset I of K〈x1, . . . , xn〉 that is closed
under polynomial addition and satisfies fgh ∈ I ∀g ∈ I and ∀f, h ∈ R is
said to be a two-sided ideal of R. If X is a subset of R, then 〈X〉 denotes
the ideal generated by X, i.e. the smallest ideal of R that contains X.

We arrive to the main definition:

Definition 1 Let > be an admissible order on R = K〈x1, . . . , xn〉, and let
I be a two-sided ideal of R. A subset G of I is a Gröbner basis for I with
respect to > if 〈LT (G)〉 = 〈LT (I)〉.

Theorem 1 (Division Algorithm, [1], 1.3.3) Given g ∈ K〈x1, . . . , xn〉
and an ordered subset F = {f1, . . . , fs} of K 〈x1, . . . , xn〉, we can find non-
negative integers t1, . . . , ts, and elements uij , vij , r ∈ K〈x1, . . . , xn〉, for
1 ≤ i ≤ s, 1 ≤ j ≤ ti, such that:

1. g =
∑s

i=1

∑ti
j=1 uijfivij + r,

2. LT (g) ≥ LT (uijfivij) ∀i, j,
3. LT (fi) does not divide any monomial that occurs in r for 1 ≤ i ≤ s.

This r is the remainder of the division; we say that g reduces to r modulo
F , and we denote it by g

F→ r.
We now present the definition of overlap relations, which are analogous

to the S-polynomials of the commutative setting.

Definition 2 Let f, g ∈ K〈x1, . . . , xn〉, and suppose that b, c ∈ Σ∗ are such
that:

1. LT (f) · c = b · LT (g)

2. LT (f) - b, LT (g) - c
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Then the overlap relation of f and g by b, c is

O(f, g, b, c) =
1

LC(f)
· f · c− 1

LC(g)
· b · g.

The following result is important for deciding whether a subset G of an
ideal is a Gröbner basis or not.

Theorem 2 ([1], Theorem 1.3.4.5) Let K〈x1, . . . , xn〉 be the free algebra
over a finite field K in n non-commuting variables. Let Σ∗ be the set of
finite noncommutative words generated by Σ = {x1, . . . , xn}, and let > be
an admissible order on Σ∗. Suppose G is a set of elements of K〈x1, . . . , xn〉
such that for distinct elements f, g ∈ G, LT (f) - LT (g), and every overlap
relation O(g1, g2, b, c) reduces to zero modulo G for every pair g1, g2 ∈ G.
Then G is a Gröbner basis for 〈G〉.

Finally, given an admissible term order and a set of generators of an
ideal I, a noncommutative version of Buchberger’s algorithm can be defined
and used to construct Gröbner bases.

As can be seen, noncommutative Gröbner basis theory is analogous to
commutative Gröbner basis theory and yet, we can find some differences
between the two of them. The most interesting difference is, perhaps, the
fact that whereas in the commutative case every Gröbner basis of an ideal is
finite, in the noncommutative case we find that some ideals do not have finite
Gröbner basis under some monomial orders. Moreover, there are ideals that
do not have finite Gröbner basis under any admissible order. An example
of such an ideal is given next.

Theorem 3 ([1], Proposition 3.4.1) Let K〈x, y, z〉 be the noncommuta-
tive free associative algebra over a finite field K. Let g1 = xzy + yz,
g2 = yzx+zy ∈ K〈x, y, z〉. Then I = 〈g1, g2〉 does not have a finite Gröbner
basis under any admissible order.

We end this section with the following corollary of Theorem 3:

Corollary 1 ([1], Corollary 3.4.2) Let K〈x1, . . . , xn〉 be the noncommu-
tative free associative algebra over a finite field K in n variables with n ≥ 5.
Let A =

∏n
i=1 xi, B = x1(

∏n−1
i=2 ρ(xi))xn and C = x1(

∏n−1
i=2 σ(xi))xn, where

ρ and σ are nontrivial permutations of {x2, . . . xn−1}. Let g1 = ACB + BC
and g2 = BCA + CB. Then I = 〈g1, g2〉 does not have a finite Gröbner
basis under any admissible order.

4



3 Noncommutative Gröbner basis Public Key Cryp-
tosystems

A noncommutative Gröbner basis public-key cryptosystem consists of the
following:

• Private Key: A Gröbner Basis, G = {g1, . . . , gt} for a two-sided ideal
I of a noncommutative free associative algebra K〈x1, . . . , xn〉 over a
finite field K, with respect to some monomial order >.

• Public Key: A set, Q = {q1, . . . , qs}, where qr =
∑t

i=1

∑dri
j=1 frijgihrij ,

chosen so that computing a Gröbner basis of 〈Q〉 is infeasible.

• Message Space: M = NonLT (I) or a subset of NonLT (I).

• Encryption: c = p + m, where p =
∑s

i=1

∑kir
j=1 FrijqiHrij and m ∈ M

is a message.

• Decryption: Reduction of c modulo G yields the message, m.

The advantage of the noncommutative Gröbner basis public-key cryp-
tosystem over the commutative version is that Q can chosen so that 〈Q〉
does not have a finite Gröbner basis under any admissible order. In [1], Rai
proposes a cryptosystem that has this property. This cryptosystem is based
on Theorem 3, and we will devote the rest of the paper to analyzing it.

Construction 1 To construct a public-key cryptosystem based on Theorem
3, pick a polynomial g ∈ K〈x, y, z〉, whose leading term has no self-overlaps.
This ensures that G = {g} is a Gröbner basis for 〈g〉. Set {g} as the private
key. Next, suppose that f, h ∈ K〈x, y, z〉 are such that LT (f) ·LT (g) ·LT (h)
and LT (h) · LT (g) · LT (f) have no self-overlaps. Let q1 = fgh + hg and
q2 = hgf + gh. Set {q1, q2} as the public key. The message space consists
of elements of NonLT (〈G〉) and varies depending on the private key used.
To encrypt a message m, choose random polynomials F1, F2,H1 and H2,
and let p = F1q1H1 + F2q2H2. Then c = p + m is the encrypted message.
Decryption is achieved by reducing c modulo G = {g}.

Next, we discuss some weaknesses of a cryptosystem based on Con-
struction 1, as well as ways that help overcome them. The first of these
weaknesses is the fact that, in practice, if F1, F2,H1 and H2 are arbitrary,
c = F1q1H1 + F2q2H2 + m can be reduced correctly by using the public key
Q = {q1, q2}, thusly revealing the message m. In [1], Rai proposes some
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techniques that prevent this from happening. Using the GAP computa-
tional algebra software, we ran some examples and developed the following
technique:

Technique 1 Given a monomial order >, choose monomials A1, A2, B1 and
B2 such that

A1 · LT (q1) ·B1 = −A2 · LT (q2) ·B2

Set F1, F2,H1 and H2 as:

F1 = A1 + random smaller monomials
F2 = A2 + random smaller monomials
H1 = B1 + random smaller monomials
H2 = B2 + random smaller monomials

This technique ensures that c = F1q1H1 + F2q2H2 + m does not yield m
when reduced by {q1, q2}.

Example 1. If we let f = x− 5328, g = z − 6426 and h = y− 878, then we
have

q1 = fgh + hg = xzy − 5328zy − 6426xy − 878xz + yz + 5642028x
+4677106y + 34231302z − 30055083156

q2 = hgf + gh = yzx− 6426zx− 878yx− 5328yz + zy + 5642028x
+34231302z + 4677106y − 30055083156.

Let m be the message. Let > be length-lex. Use the technique described
above to find polynomials F1,H1, F2 and H2:

F1 = zyxzxy + xyz + zyz + xyx + yxxy + xy + yz

F2 = −zyxzxyxz + zzx + xyx + zx + xz

H1 = zxxyyzzx + zzy + yzy + yxy + zyx + yx + zy

H2 = xyyzzx + zyz + yzz + yxy + yx + zx

The encrypted message is c = F1q1H1 + F2q2H2 + m, which does not yield
m when reduced by {q1, q2}

A second weakness of the cryptosystem is the fact that the encrypted
message can be reduced to m if the attacker is able to compute a partial
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Gröbner basis for the public key. This problem can be overcome if the
number of variables in f, g and h is increased, making the computation of a
partial Gröbner basis for 〈q1, q2〉 harder.

A third weakness of the cryptosystem is that it is susceptible to a trilinear
algebra kind of attack. The following section will be dedicated to discussing
this weakness.

4 An attack to the cryptosystem

We now turn our attention to the possibility of a trilinear algebra attack to
a cryptosystem based on Theorem 3. Before describing the attack, we need
the following definition. Let Σ = {x1, . . . , xs}, and let x0 = 1. For a word
xi1 . . . xir , with xij ∈ {x1, . . . xs}, we define a subword as xε1i1 . . . xεrir ,
where εj ∈ {0, 1}.

Having this, the procedure of the attack is as follows. For a cryptosystem
as in Construction 1, let f be a linear combination of all the subwords
of x1 . . . xl with coefficients a1, . . . , a2l , where a1 6= 0, let g be a linear
combination of all the subwords of xl+1 . . . xl+m with coefficients b1, . . . , b2m ,
where b1 6= 0 and let h be a linear combination of all the subwords of
xl+m+1 . . . xl+m+n with coefficients c1, . . . , c2n , where c1 6= 0. Order the
monomials of f so that a1 is the coefficient of x1 . . . xl and al is the constant
term. Proceed analogously with g and h.

We assume that by looking at the polynomials q1 and q2 of the public
key, the attacker can know that these are of the form q1 = fgh + hg and
q2 = hgf + gh, and therefore can know what monomials occur in f, g and h.
Let uijk denote the coefficient in q1 of the word formed by multiplying the
subwords corresponding to ai, bj and ck. If i = 0, then uijk denotes the coef-
ficient in q1 of the word formed by multiplying the subwords corresponding
to bj and ck. The attacker then uses the uijk to set up a system of polyno-
mials in the variables a1, . . . , a2l , b1, . . . , b2m , c1, . . . , c2n . These polynomials
are of the form:

aibjck − uijk, ∀ i = 1, . . . , 2l − 1, j = 1, . . . , 2m, k = 1, . . . , 2n

a2lbjck − u2ljk, ∀ j = 1, . . . , 2m − 1, k = 1, . . . , 2n − 1
a2lb2mck + b2mck − u2l2mk, ∀ k = 1, . . . , 2n

a2lbjc2n + bjc2n − u2lj2n ,∀ j = 1, . . . , 2m − 1
bjck − u0jk,∀ j = 1, . . . , 2m − 1, k = 1, . . . , 2n − 1.

Setting these polynomials equal to zero, we get a system of trilinear cubic
equations in the ai, bj , ck which, when solved, gives the attacker possession
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of the private key. Although there is no known general method for solving
a system of cubic equations, we will show that this specific system can be
easily solved by computing its Gröbner basis, which is given by the following
theorem.

Theorem 4 Let E denote the above set of polynomials, and let > be a
monomial order with c2n > · · · > c1 > b2m > · · · > b1 > a2l > · · · > a1. Let
G denote the following set of polynomials:

u111c2 − u112c1, . . . , u111c2n − u112nc1,

u111b2 − u121b1, . . . , u111b2m − u12m1b1,

b1c1 − u011,

u011a1 − u111, . . . , u011a2l − u2l11.

Then G is a Gröbner basis for 〈E〉 with respect to >.

Proof. First, we will show that 〈G〉 = 〈E〉, by showing that 〈G〉 ⊆ 〈E〉
and that 〈E〉 ⊆ 〈G〉. To see that 〈G〉 ⊆ 〈E〉, note that the elements of G
are either elements of E or are obtained by computing the S-polynomials of
certain pairs of elements of E:

S(a1b1c1 − u111, a1b1c2 − u112) = u111c2 − u112c1

S(a1b1c1 − u111, a1b1c3 − u113) = u111c3 − u113c1

...
S(a1b1c1 − u111, a1b1c2n − u112n) = u111c2n − u112nc1

S(a1b1c1 − u111, a1b2c1 − u121) = u111b2 − u121b1

S(a1b1c1 − u111, a1b3c1 − u131) = u111b3 − u131b1

...
S(a1b1c1 − u111, a1b2mc1 − u12m1) = u111b2m − u12m1b1

S(a1b1c1 − u111, b1c1 − u011) = u011a1 − u111

...
S(a2lb1c1 − u2l11, b1c1 − u011) = u011a2l − u2l11.

To show that 〈E〉 ⊆ 〈G〉, we will show that ∀p ∈ E, p
G→ 0. If p is of the

form p = aibjck − uijk ∀ i = 1, . . . , 2l − 1, j = 1, . . . , 2m, k = 1, . . . , 2n, then

p = (u111ck − u11kc1)
(

aibj

u111

)
+ (u111bj − u1j1b1)

(
u11kaic1

u2
111

)
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+(b1c1 − u011)
(

u1j1u11kai

u2
111

)
+ (u011ai − ui11)

(
u1j1u11k

u2
111

)

+
(

ui11u1j1u11k

u2
111

− uijk

)
,

which is equivalent to saying that p
G→

(
ui11u1j1u11k

u2
111

− uijk

)
. Taking a look

at a subset of the S-polynomials of E, namely:

u011a1 − u111, . . . , u02m2na1 − u12m2n

...
u011a2l−1 − u2l−1,1,1, . . . , u02m2na2l−1 − u2l−1,2m,2n

u011b2 − u021b1, . . . , u011b2m−1 − u0,2m−1,1b1

...
u0,1,2n−1b2 − u0,2,2n−1b1, . . . , u0,1,2n−1b2m−1 − u0,2m−1,2n−1b1,

we see that uijk

u0jk
=

uij′k′
u0j′k′

and u0jk

u01k
=

u0jk′
u01k′

∀ i = 1, . . . , 2l, j = 1, . . . , 2m − 1,
and k = 1, . . . , 2n − 1. Hence, we have that

ui11u1j1u11k − uijku
2
111 =

(
ui11u1j1u11k −

(
ui11u0jk

u011

)
u2

111

)

= ui11

(
u1j1u11k −

(
u0jk

u011

)
u2

111

)

= ui11

(
u1j1u11k −

(
u0jk

u011

)(
u1j1u011

u0j1

)
u111

)

= ui11u1j1

(
u11k −

(
u0jk

u0j1

)
u111

)

= ui11u1j1

(
u11k −

(
u0jk

u0j1

)(
u11ku011

u01k

))

= ui11u1j1u11k

(
1−

(
u0jk

u0j1

)(
u011

u01k

))

= 0.

Here, we have used the fact that ui11
u011

= uijk

u0jk
, u1j1

u0j1
= u111

u011
, u11k

u01k
= u111

u011

and u0j1

u011
= u0jk

u01k
. From this it follows that

(
ui11u1j1u11k

u2
111

− uijk

)
= 0. Thus,

if p = aibjck − ui,j,k, then p
G→ 0. For the cases where p = bjck − u0jk,

p = a2lbjc2n + bjc2n − u2lj2n and p = a2lbm
2 ck + bm

2 ck − u2l2mk, we can show

that p
G→ 0 in an analogous way. Therefore, 〈E〉 ⊆ 〈G〉 and 〈E〉 = 〈G〉.

9



Finally, consider the following lemma:

Lemma 1 ([2], Proposition 2.4) Given a finite set G ⊂ K[x1, . . . , xn],
suppose that we have f, g ∈ G such that LT (f) and LT (g) are relatively
prime. Then S(f, g) G→ 0.

It is clear that for every pair g1, g2 ∈ G, LT (g1) and LT (g2) are rela-
tively prime. By Lemma 1 and Buchberger’s criterion, it follows that G is
a Gröbner basis for 〈G〉, and thus, of 〈E〉. This concludes our proof. ¤

Setting the polynomials of G equal to zero, we get a system of equations
that yields values for unique values for the ai’s, and values for the bj ’s and
ck’s up to a constant factor. Thus, the attacker obtains g up to a constant
factor. This is enough to retrieve the message m from c.

Example 2. Let q1 in the public key be

q1 = 49333500510x1x2x3x4x5x6 + 34106767170x2x3x4x5x6

+25879869120x1x3x4x5x6 + 14446688865x + x2x4x5x6

+68707446990x1x2x3x5x6 + 45414323466x1x2x3x4x6

+10519896276x1x2x3x4x5 + 9295930x5x6x3x4

+75324920790x3x4x5x6 + 9987733455x2x4x5x6

+47500965330x2x3x5x6 + 31397240022x2x3x4x6

+7272941292x2x3x4x5 + 7578590880x1x4x5x6

+36043250880x1x3x5x6 + 23823907392x1x3x4x6

+5518634112x1x3x4x5 + 4919642070x1x2x5x6

+13299007659x1x2x4x6 + 3080617974x1x2x4x5

+63249155034x1x2x3x6 + 14651204724x1x2x3x5

+212288756550x1x2x3x4 + 8557438x6x3x4 + 2722195x5x6x4

+12946570x5x6x3 + 1982268x5x3x4 + 22057946085x4x5x6

+104906056710x3x5x6 + 69340920114x3x4x6

+16062317604x3x4x5 + 3401199690x2x5x6 + 9194282853x2x4x6

+2129788458x2x4x5 + 43727369478x2x3x6 + 10129125708x2x3x5

+146766053850x2x3x4 + 2580795840x1x5x6 + 6976528608x1x4x6

+1616061888x1x4x5 + 33179884608x1x3x6 + 7685877888x1x3x5

+111364593600x1x3x4 + 4528813362x1x2x6 + 1049066532x1x2x5

+62166065325x1x2x4 + 295657480950x1x2x3 + 2505937x6x4
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+11918062x6x3 + 7512489040x5x6 + 580482x5x4 + 2760732x5x3

+20305607511x4x6 + 4703645646x4x5 + 96572056386x3x6

+22370211396x3x5 + 324173371600x3x4 + 3130999854x2x6

+725273244x2x5 + 42978574275x2x4 + 204403108650x2x3

+2375770944x1x6 + 550329984x1x5 + 32611706400x1x4

+155099006400x1x3 + 21169888350x1x2 + 6915678064x6

+1601966304x5 + 94930053400x4 + 451480728400x3

+14635824450x2 + 11105515200x1 + 32327261200.

We assume that by looking at q1, the attacker knows that q1 is of the form
q1 = fgh + hg and that f, g and h are of the form

f = a1x1x2 + a2x1 + a3x2 + a4

g = b1x3x4 + b2x3 + b3x4 + b4

h = c1x5x6 + c2x3 + c3x4 + c4,

where the ai’s, bj ’s and ck’s are constants.
Then the attacker treats a1, . . . , c4 as variables and uses the coefficients of

q1 to set up a system of polynomials as described above. For example, since
a1x1x2·b1x3x4·c1x5x6 = a1b1c1x1x2x3x4x5x6, and 49333500510x1x2x3x4x5x6

occurs in q1, setting the coefficients equal to each other yields the equation
a1b1c1 − 49333500510 = 0. The polynomials on the left-hand side of the
resulting equations conform the following list:
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a1b1c1 − 49333500510 a3b1c1 − 34106767170
a2b1c1 − 25879869120 a1b3c1 − 14446688865
a1b2c1 − 68707446990 a1b1c3 − 45414323466
a1b1c2 − 10519896276 a4b1c1 − 75324920790
a3b3c1 − 9987733455 a3b2c1 − 47500965330
a3b1c3 − 31397240022 a3b1c2 − 7272941292
a2b3c1 − 7578590880 a2b2c1 − 36043250880
a2b1c3 − 23823907392 a2b1c2 − 5518634112
a1b4c1 − 4919642070 a1b3c3 − 13299007659
a1b3c2 − 3080617974 a1b2c3 − 63249155034
a1b2c2 − 14651204724 a1b1c4 − 212288756550
a4b3c1 − 22057946085 a4b2c1 − 104906056710
a4b1c3 − 69340920114 a4b1c2 − 16062317604
a3b4c1 − 3401199690 a3b3c3 − 9194282853
a3b3c2 − 2129788458 a3b2c3 − 43727369478
a3b2c2 − 10129125708 a3b1c4 − 146766053850
a2b4c1 − 2580795840 a2b3c3 − 6976528608
a2b3c2 − 1616061888 a2b2c3 − 33179884608
a2b2c2 − 7685877888 a2b1c4 − 111364593600
a1b4c3 − 4528813362 a1b4c2 − 1049066532
a1b3c4 − 62166065325 a1b2c4 − 295657480950
c3b1 − 8557438 c2b1 − 1982268
c1b3 − 2722195 c1b2 − 12946570
c1b1 − 9295930 c3b3 − 2505937
c3b2 − 11918062 c2b3 − 580482
c2b2 − 2760732 a4b3c3 − 20305607511
a4b3c2 − 4703645646 a4b2c3 − 96572056386
a4b2c2 − 22370211396 a3b4c3 − 3130999854
a3b4c2 − 725273244 a3b3c4 − 42978574275
a3b2c4 − 204403108650 a2b4c3 − 2375770944
a2b4c2 − 550329984 a2b3c4 − 32611706400
a2b2c4 − 155099006400 a1b4c4 − 21169888350
a3b4c4 − 14635824450 a2b4c4 − 11105515200
a4b4c1 + c1b4 − 7512489040 a4b4c3 + c3b4 − 6915678064
a4b1c4 + c4b1 − 324173371600 a4b4c4 + c4b4 − 32327261200
a4b4c2 + c2b4 − 1601966304 a4b2c4 + c4b2 − 451480728400
a4b3c4 + c4b3 − 94930053400.

Let > be a monomial order with

c1 > . . . > c4 > b1 > . . . > b4 > a1 > . . . > a4.
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The attacker then computes a Gröbner Basis with respect to > for the above
set of polynomials and gets:

1235c1 − 287c4 (1)
6175c2 − 306c4 (2)
6175c3 − 1321c4 (3)
b4c4 − 3989050 (4)
323b1 − 3239b4 (5)
323b2 − 4511b4 (6)
646b3 − 1897b4 (7)

a1 − 5307 (8)
a2 − 2784 (9)
a3 − 3669 (10)
a4 − 8103. (11)

Setting these polynomials equal to zero gives a system of equations. Solving
(8) through (11) yields unique values for the ai’s. Letting b4 = d, d some
constant, and then solving equations (1) through (7) gives values for the
bj ’s and ck’s up to a constant factor. Thus, the attacker knows g up to a
constant factor, and can reduce c and obtain m.

If f, g and h are allowed to have share variables, for example, if f, g
and h are of the form described in Corollary 1, then the attack, after a few
variations, still holds. Similarly, increasing the number of variables in f, g
and h does not give any additional security.

A better attempt at countering this attack is, perhaps, to use the fol-
lowing result, which follows from Theorem 3 and provides us with a way to
generate polynomials q1 and q2 that can be used for the cryptosystem:

Corollary 2 Let K 〈x1, . . . , xn〉 be the free associative algebra in n non-
commuting indeterminates over a finite field K. Let q1 = x1A + B and
q2 = Bx1 + A, where A = x2 . . . xn and B =

∏n
i=2 ρ(xi), and ρ is a permu-

tation of {x2, . . . , xn}. Suppose that A and B can be expressed as A = CD
and B = D′C ′, where C = x2 . . . xr, D = xr+1 . . . xn, C ′ =

∏r
i=2 σ1(xi),

and D′ =
∏n

i=r+1 σ2(xi), and σ1, σ2 are permutations of {x2, . . . , xr} and
{xr+1, . . . , xn} respectively. Then the ideal generated by q1 and q2 does not
have a finite Gröbner basis under any admissible order.
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Given polynomials q1, q2 obtained by using Corollary 2, the attacker is
slowed down, for he does not know the specific way in which q1, q2 were con-
structed. However, the attacker can still perform the attack in a reasonably
short amount of time.

5 Conclusion

A cryptosystem based on Theorem 3 was the base for our work, which con-
sisted of three parts: the implementation of the cryptosystem using the
GAP computational algebra software, the search for weaknesses of the cryp-
tosystem, and the formulation of techniques to overcome such weaknesses.
As a result for the implementation part of the project, we programmed an
extension for the GBNP noncommutative algebra package. The extension
consists, mainly, of an encryption and decryption algorythm.

We then checked the cryptosystem for possible weaknesses, and found
that reduction of the encrypted message by the public key usually yielded
the original message. We provided a technique that prevents this from hap-
pening. A second weakness of the cryptosystem, reduction of the encrypted
message by a partial Gröbner basis, was countered by increasing the number
of variables used in f, g and h, which makes the computation of a partial
Gröbner basis harder.

Finally, we found that the cryptosystem is susceptible to a trilinear al-
gebra attack. This is so because the public key is constructed in a very
specific way. We were not able to find a way to counter this attack. Thus,
we conclude that a cryptosystem based on Theorem 3 is insecure.

This does not mean that noncommutative Gröbner basis cryptosystems
in general are insecure. As more classes of ideals that do not have finite
Gröbner basis under any admissible order are discovered, the possibilities
of an attack along the lines discussed here may be exhausted. Yet, unless
a general way to generate ideals that do not have finite Gröbner basis un-
der any admissible order is discovered, a noncommutative Gröbner basis
cryptosystem remains highly unrecommended.

6 Appendix

Complete code for division algorithm, functions that compute the leading
monomial, leading term and leading coefficient, and other functions needed
to encrypt and decrypt a message for a cryptosystem based on Theorem 3.

# This method (ifPolys)is used to test whether or not the parameters
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# that go in the functions are actual polynomials. A polynomial

# is represented as a list of two lists, the first list

# (list[1])contains the monomials (lists of the form

# [var1,...,Varn] where the different ’vars’ are the variables

# concatenated as a monomial.

# Input: poly

# * poly: is a non-commutative polynomial.

# Output: return false if the function is a polynomial and

returns true if is not.

ifPolys:= function(poly)

if Length(poly) = 2 and Length(poly[1]) = Length(poly[2]) then

return false;

else

return true;

fi;

end;;

#This function get the leading monomial of the noncommutative

# polynomial. Takes as paramater in the form [[monomials],

# [coefficients]].

# Makes a copy of [monomials] and compares the length of the

# monomials and takes out of the list of the lesser one. To

# break ties, compares the i’th variable simultaniously until

# it finds one pair with different preference and takes out.

# At the end the list will only contain the leading monomial

# wich is the one biger in length or with more preference.

# Input: poly

# * poly : Polynomial in NP form (look in GBNP documentation

# for NP form). Output: the leading term of poly, a monomial. # How its done: This function looks for the leading monomial

using length-lex order.

LM := function(poly)

local monlist,i,finish,mon,polym;

polym := ShallowCopy(poly);

if polym = [[],[]] then #case of zero polynomial

Error("Monomio indefinido!!!LM");

else

monlist := ShallowCopy(poly[1]);

while Length(monlist)> 1 do

if Length(monlist[1]) > Length(monlist[2]) then

Remove(monlist,2);

elif Length(monlist[2]) > Length(monlist[1]) then

Remove(monlist,1);

elif Length(monlist[1]) = Length(monlist[2]) then

finish:=false;
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i:=1;

while finish=false do

if monlist[1][i] > monlist[2][i] then

finish:=true;

Remove(monlist,1);

elif monlist[2][i] > monlist[1][i] then n

finish:=true;

Remove(monlist,2);

else

i := i+1;

fi;

od;

fi;

od;

return [monlist,[1]];

fi;

end;;

# This function is use to get the leading coefficient of a

# noncommutative polynomial. Uses LM() that looks for the

# leading term using Length-lex order.

# Input: poly

# *poly: the noncommutative polynomial in the NP form.

# Output: the leading coefficient in the form of an integer.

LC:=function(poly)

local mon1, indice,polyc;

if ifPolys(poly) then

Error("A ifDiv estan entrando cosas raras!!!!!!\n");

else

polyc := ShallowCopy(poly);

mon1:= ShallowCopy(LM(polyc)[1][1]);

indice:=Position(polyc[1], mon1);

return polyc[2][indice];

fi;

end;;

# This function return the leading term of the

# noncommutative polynomial. Looks for the leading

# monomial (using length-lex ordering) and the LC(),

# and returns a NP polynomial with one

# term(the leading term).

# Input: poly

# *poly: the noncommutative polynomial in the form

# of a list.

# Output: the leading term in the form of a list.
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LTer:=function(poly)

local ret;

ret := ShallowCopy(LM(poly));

ret[2][1] := LC(poly);

return ret;

end;;

# This function checks if U = UI*LTerm*UR. If it does then it will

# return a list with UI and UR ([UI,UR]).

# Input: U and LTerm

# Output: A list with Ui and Ur

# How its done: Compares the list LTerm with posible sublists

# of U and if it finds then it will create UI as all the

# variables until the variable before the first that matches

# the first variable of Lterm in U. Similarly for UR, but from

# the next variable in U that matches with the one of LTerm.

ifDiv:= function(MonU,MonLTerm)

local founds,continues,primerito,lastui,primeritour,newlists

,UI,UR,k,l,j,U,LTerm;

if Length(MonU) <> 2 or Length(MonLTerm) <> 2 then

Error("A ifDiv estan entrando cosas raras!!!!!!\n");

else

U := ShallowCopy(MonU[1][1]);

LTerm := ShallowCopy(MonLTerm[1][1]);

founds := false;

continues := true;

primerito := 1;

newlists := [];

UI := [];

UR := [];

lastui:=1;

while continues = true do

if Length(U) - primerito + 1 < Length(LTerm) then

continues := false;

elif LTerm[1] = U[primerito] then

newlists:=[];

for j in [primerito..(primerito + Length(LTerm) - 1)] do

newlists := Concatenation(newlists,[U[j]]);

od;

if newlists = LTerm then

founds := true;

continues := false;

if primerito = 1 then

UI := [];

else

lastui := primerito - 1;
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for k in [1..lastui] do

UI := Concatenation(UI,[U[k]]);

od;

fi;

if primerito = 1 then

primeritour := lastui + Length(LTerm);

else

primeritour := lastui + Length(LTerm)+1;

fi;

if primeritour > Length(U) then

UR := [];

else

for l in [primeritour..Length(U)] do

UR := Concatenation(UR,[U[l]]);

od;

fi;

else

primerito := primerito + 1;

fi;

else

primerito := primerito + 1;

fi;

od;

if founds = false then

return 0;

else

return [[[UI],[1]],[[UR],[1]]];

fi;

fi;

end;;

# This function return the reminder of the division algorithm,

#in the

# form of a list, for a noncommutative polynomial.

# Input: gg anf FF.

# gg: the divisor in the form of a noncommutative polinomial

# list.

# FF: the list of the two "dividendo" in the form of a list.

# Ex.

# f1: is the first polynomial.

# f2: the second polynomial.

# FF: would be in the form FF:=[f1,f2].

# Output: the remainder of the division algorithm in the

# form of a list.

algoDiv:= function(gg,FF)

local r,u,c,j,found,ui,ur,damcoef,g1,g2,g3,g,F,LMFj;
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g := ShallowCopy(gg);

F := ShallowCopy(FF);

r := [[],[]];

damcoef :=0;

g1:=0;

g2:=0;

g3:=0;

ui:=0;

ur:=0;

while g <> [[],[]] do

u:= LM(g);

c:= LC(g);

j:= 1;

found:=false;

while j<=Length(F) and found = false do

LMFj:= LM(F[j]);

if ifDiv(u,LMFj) <> 0 then

found:=true;

ui:= ifDiv(u,LMFj)[1];

ur:= ifDiv(u,LMFj)[2];

u:= MulNP(ui,MulNP(LMFj,ur));

damcoef:= [[[]],[c/LC(F[j])]];

g1:=MulNP(damcoef,ui);

g2:=MulNP(g1,F[j]);

g3:=MulNP(g2,ur);

g:= AddNP(g,g3,1,-1);

else

j:=j+1;

fi;

od;

if found = false then

r:= AddNP(r,LTer(g),1,1);

g:= AddNP(g,LTer(g),1,-1);

fi;

od;

return r;

end;;

# Returns a random monomial of lenght ’monlen’ and ’vars’

# different variables

# and with max coefficient ’coeffmax.

# Input: monlen, vars and coeffmax

# * monlen: the maximun lenght of the monomial.

# * vars: the number of variables
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# * coeffmax: the maximun value of the coefficients.

# Output: A Random monomial y the form of a list.

RandMon := function (monlen, vars, coeffmax)

local poly, mon, rs1, ml,i;

poly := [[],[]];

mon := [];

rs1 := GlobalRandomSource;

ml := Random(rs1,[1..monlen]);

for i in [1..ml] do

Add(mon,Random(rs1,[1..vars]));

od;

Add(poly[1],mon);

Add(poly[2],Random(rs1,[1..coeffmax]));

return poly;

end;;

# Returns a random polynomial with number of terms ’Terms’.

# Input: Terms, monlens, varss and coeffmaxs

# * Terms: the maximun number of terms in the polynomial.

# * monlens: the maximun lenght of the monomials in the

#polynomial. * varss: the maximun number of variables.

# * coeffmaxs: the maximun value of the coefficients.

# Output: A random polynomial in the form of a list.

RandPol := function(Terms, monlens, varss, coeffmaxs)

local poly, monom, j;

j := 1;

poly := RandMon(monlens,varss,coeffmaxs);

while j <= Terms do

monom := RandMon(monlens, varss, coeffmaxs);

j := j + 1;

poly:=AddNP(poly,monom,1,1);

od;

return poly;

end;;

# This function creates F1,F2,H1,H2 such that when you do the

# multiplication F1*q1*H1 and F2*q2*H2 the leading terms of q1

# and q2 go away. this is because if you divide by the public

# key (q1 and q2) you can get the message.

FQH := function()

local mF1, mF2, mH1, mH2, F1, H1, F2, H2,temp, LengthmF1,

LengthmH2,rs1,i;

mF1:=[];
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mH2:=[];

mF2:= [1,3]

#this line depends on how you define your f,g and h.

mH1:= [3,1];

H1:=[[[]],[]];

F1:=[[[]],[]];

F2:=[[[]],[]];

H2:=[[[]],[]];

LengthmF1 := 0;

LengthmH2 := 0;

rs1 := GlobalRandomSource;

LengthmF1 := Random(rs1,[3..25]);

LengthmH2 := Random(rs1,[3..25]);

for i in [1..LengthmF1] do

Add(mF1,Random(rs1,[1..3]));

od;

temp := List(mF1);

for i in [1..Length(mF2)] do

Add(temp,mF2[i]);

od;

mF2 := List(temp);

for i in [1..LengthmH2] do

Add(mH2,Random(rs1,[1..3]));

od;

for i in [1..Length(mH2)] do

Add(mH1,mH2[i]);

od;

F1 := AddNP([[[mF1]],[-1]],RandPol(10,Length(mF1)-1,3,34567),1,1);

F2 := AddNP([[[mF2]],[1]],RandPol(10,Length(mF2)-1,3,34567),1,1);

H1 := AddNP([[[mH1]],[1]],RandPol(10,Length(mH1)-1,3,34567),1,1);

H2 := AddNP([[[mH2]],[1]],RandPol(10,Length(mH2)-1,3,34567),1,1);

return [F1,F2,H1,H2];

Reset(rs1);

end;;

# This function encrypt the message, that is in the form of a

# polynomial in this case in the form of a list. The values of

# a, b and c are constant, if you whant to change them it has

# to be only in the code.

# Input: mensaje (In English message)

# * mensaje: the message in the form of a polynomial (list).

# Outpu: A polynomial, the encrypted message.
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Encrypt := function(mensaje)

local F, A, G, Q, x, y, z,encrypt, div1, g, g1, h1, h;

local f1, f, F1, F2, H1, H2, q1, q2,a ,b, c;

F:=ZmodnZ(9973);

A:=FreeAssociativeAlgebraWithOne(F,"x","y","z");

G:=GeneratorsOfAlgebraWithOne(A);

GBNP.ConfigPrint("x","y","z");

a:=5328;

b:=6426;

c:=878;

x:=G[1];

y:=G[2];

z:=G[3];

f1:=x-a*x^0;

f:=GP2NP(f1);

g1:=z-c*x^0;

g:=GP2NP(g1);

h1:=y-b*x^0;

h:=GP2NP(h1);

Q:=FQH();

F1:=Q[1];

F2:=Q[2];

H1:=Q[3];

H2:=Q[4];

q1:=AddNP(MulNP(MulNP(f,g),h),MulNP(h,g),1,1);

q2:=AddNP(MulNP(MulNP(h,g),f),MulNP(g,h),1,1);

CleanNP(encrypt);

encrypt:=AddNP(AddNP(MulNP(MulNP(F1,q1),H1),MulNP

(MulNP(F2,q2),H2),1,1),mensaje,1,1);

return encrypt;

end;;

# This function reduces the polynomial of the encrypted

# message by the private key g. Returns the remainder,

# that is the decrypted message.

# Input: mensaje (In English message).
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# * mensaje: In this case the message is the return

# polynomial oin the encryption.

# Output: The decryption, the output would be the message.

Decrypt := function(mensaje)

local div1,F,A,G,c,x,y,z,g1,g;

F:=ZmodnZ(9973);

A:=FreeAssociativeAlgebraWithOne(F,"x","y","z");

G:=GeneratorsOfAlgebraWithOne(A);

GBNP.ConfigPrint("x","y","z");

c:=878;

x:=G[1];

y:=G[2];

z:=G[3];

g1:=z-c*x^0;

g:=GP2NP(g1);

div1:=algoDiv(mensaje,[g]);

return div1;

end;;
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