Mathematics 372 — Numerical Linear Algebra
Midterm Problem Set Solutions
March 23, 2007

I. (More on Gaussian elimination and LU factorizations).

A) (10) Show that an n x n matrix A has an LU factorization (equivalently, Gaussian
elimination is possible with no row interchanges) if and only if for each 1 < k < n,
the upper left corner k£ X k submatrix

ailx - Qig
Ap =

g1 -+ Qkk

is nonsingular.

Solution: =: First assume that Gaussian elimination on A is possible with no row
interchanges. We will argue by induction on k. The base case is k = 1. If we do not
have to interchange rows to find a pivot element in column 1, then a;; = det(A4;) # 0.
So the base case is established. Now assume that we have shown that det(A,) # 0 for
¢ < k. We do the row operations (without row interchanges) to create the zeroes below
the main diagonals in columns 1 through ¢. Since each of these row operations is of
type 1 (replacing a row by that row plus a multiple of another row), the determinants
of the matrix A and of the principal minors are not changed. In particular, the
determinant of the minor A, will be the same as the determinant of the “eliminated”
(£+1) x (£+ 1) matrix:

a1l Qai2 0'13 Tt allg a1,0+1 \

/ / / /

0 ayp ass -+ ay a2 041
/ / /

0 0 azg -+ ag ag,y
!/ /

\ 0 0 0 - ay ?e,e+1

0 0 0 - 0 apyyep

The induction hypothesis is that
det(Ay) = a11a99 - - - ay, # 0.
If we can use the diagonal entry as pivot in column £+ 1, then as4q ¢41 # 0. Hence
det(Agt1) = det(Ag)apiy g # 0
also.

<: For the converse, we essentially just argue in the reverse direction. If all the
det(Ag) # 0 for 1 < k < n, then doing the reductions as above, after completing each
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B)

C)

D)

column, the diagonal entry in the next column must be nonzero. Hence we never have
to interchange rows in the Gaussian elimination.

(10) Suppose that A is a matrix that satisfies the condition in part A, and for any £,

1 < k < n, partition A as
_(Ar B
(¢ 3)

where Bisk x (n—k), C'is (n—k) x k, and D is (n — k) X (n — k). Show that there
is a unique (n — k) X k matrix M such that

I 0 Ax B\ _ (A, B

-M I, ¢ D) \0 D
for some matrices B and D. Also show that D = D — C’A,:lB.
Solution: Matrices with these block decompositions can be multiplied using the same
formulas as for 2 x 2 scalar matrices. In particular the entry in the “row 2, column
1”7 of the product on the left side of the equation to be proved is

—MA,+ 1, C =—-MA, +C.

Because Ay is assumed to be invertible, there is only one matrix that makes this
equation true, namely:

(*) M = CA;Y.

The entry in “row 1, column 2” of the product is B = B. From (*), —-MB+1, D =
D,so D=D— MB =D - CA,'B as desired.

(5) Deduce that A has the block LU decomposition
_ I, 0 Ay
A= () (5

Solution: This follows because

Ii 0\ ' (I 0
-M In—k: - \M In—k:

(check by direct matrix multiplication).

S o
N————

(5) By definition, the matrix Ay satisfies the condition in part A. It can be shown
that D does as well. Hence each of these matrices also has an LU-decomposition:
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A = LUy, and D = LyUs,. Express the LU-decomposition of A in terms of
Ll,LQ,M, U1,U2, and B.

Solution: We have, by regrouping terms using associativity of matrix multiplication,
A= Iy, 0 A B
T \M I, 0 D
| Iy 0 LU, B
N M In—k 0 L2U2
_ (I O Li 0 U, L{'B
-\ M I, 0 L, 0 U,
[ Ly 0 U, L7'B
-\ ML, L, 0 U, )
This is an ordinary LU factorization for A.

II. (The matrix 2-norm, revisited.) By the general theory of the matrix operator norms
associated to vector norms on R”™, the matrix 2-norm of A € M,,«,(R) is given by

(1) [A]l2 = max [|Aulls.

llull2=1

Your goal in this problem is to prove the formula

(2) |A|l2 = v/max{|\| : X is an eigenvalue of AtA}

that we mentioned in class. The equation (1) shows that we need to solve a constrained
optimization problem to determine || Al|2.

A) (5) What standard method from multivariable calculus applies to solve constrained
optimization problems of the following form:

maximize : f(x1,...,Ty)

subject to : g(z1,...,2,) =07

Describe how the method works in general.

Solution: The method is the Lagrange multiplier method for constrained optimization.
One way to say the process is that you consider the system of n 4+ 1 equations in
n + 1 variables z1,...,x,, A obtained from the components of the vector equation
Vf = AVg, together with the gradient equation. The maximum on the constraint set
will be among the solutions of this system.

B) (15) For our purposes in (1), it will be most convenient to square both the function
||Aul|2 we seek to maximize and the constraint equation |lu|lz = 1. Writing v =

3



C)

(u1,...,un)t, apply the method with f(ui,...,u,) = ||Aul|3 and g(uy,...,u,) =
u? + -+-+u2 — 1. Show that the equations for the constrained maximum imply that
the vector u where f achieves its maximum must be an eigenvector of A*A, and that
the multiplier A in the method must be the corresponding eigenvalue.

Solution: With
f = Aull3 = (Au, Au) = (u, A" Au)

and ¢ = ||ul|2 = (u,u), in the Lagrange equations from Vf = AVg we have the

equations

of 3 dg

8ui N 3UZ
for = 1,...,n. From the form of g, the right side is easy: 2Au;. The left side is
somewhat messy, but simplest if you use the form f = (u, A*Au). When we take
this expression and compute the derivative with respect to u;, we get 2 times the
ith component of A*Au. Hence the equation Vf = AVyg is just 24°Au = 2)\u, or
A*Au = Mu. Since u is a unit vector from the constraint equation, it is nonzero.
Hence u is an eigenvector of A*A with eigenvalue .

(5) Deduce that (2) holds, giving the formula for || A||2.

Solution: From the previous part, the solutions of the Lagrange equations will consist
of (u, \) where u is a unit eigenvector of A*A, and ) is the corresponding eigenvector.
The maximum is obtained for the one of these that gives the largest value for f. But

notice,
fu) = (Au, Au) = (u, A*Au) = (u, \u) = Mu,u) = .

In other words, the value of f at the eigenvector u is just the corresponding eigenvalue
of A'A. Hence the maximum value of f will be

max{A : ) is an eigenvalue of A*A}

(note the absolute value is actually unnecessary because A A is symmetric and positive
semidefinite, so all the eigenvalues are reals with A > 0). The desired equation (2)
comes from taking square roots:

|All2 = v/max{\ : X is an eigenvalue of AtA}.

(10) Recall the 60 x 60 adjacency matrix B of the “bucky ball” from Lab/Problem
Set 3. Use (2) above and MATLAB to compute || B||2. Some technical notes: (a) The
MATLAB command eig returns a list of all the eigenvalues of a square matrix; (b)
the built-in matrix bucky is a sparse matrix. If you want to check your answer using
the norm command, you will need to convert bucky to “full” form.

Solution: See MATLAB solutions.



E) (10) If A = (ai;), the matrix Frobenius norm is defined by

1AllF =

(note: the absolute values here are unnecessary for real matrices, but necessary if
some of the entries in A are complex numbers with nonzero imaginary parts). Show
that for all matrices A

3) 1Al < | Allr < VrllAl2

Solution: For the first inequality, subdivide A into its rows and call these vectors
Aq,...,A,. Then for some unit vector u,

1[5 = [|Aull3
= (A, u)’> + -+ (A,, u)?
< [|A[l3]lell3 + - - + [|Anll3llul3  (Cauchy — Schwarz)
= [JA1[l3 +--- + | Anll3  (since [Julls = 1)

This last line is the sum of the squares of all the entries in the matrix, which is || A|%.
Hence ||A]|2 < ||A]|F for all n x n matrices A.

For the second inequality, split A into its columns, A, ..., A(™). Then the Frobenius
norm squared is the sum of the squares of the 2-norms of the columns. Using the fact
that AU) = Ae; and standard properties of matrix norms,

1AIE = A3+ ...+ A3
= ez + ... + [l Aenll3

< I All2llexll? + ... + I All2lleall3
< |42

(since |le;||3 = 1 for all of the standard basis vectors e;). Hence taking square roots,

[AllF < V/nllAll2.

F) (5) Compute the Frobenius norm of the bucky ball matrix B using MATLAB and
verify that (3) holds in this case.

Solution: See MATLAB solutions.

ITI. (Roundoff considerations and least squares.) In many situations, the way a problem is
set up can have a significant effect on the susceptibility to roundoff errors when we apply
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standard methods. But fortunately, there are often ways to minimize those effects. For
instance, suppose that we want to compute the best-fit line for the following data points

by solving the normal equations X*X (

A)

B)

C)

z; 1.001 1.002 1.003 1.004 1.005 1.006 1.007
y; 3.664 3.789 3.891 4.022 4.233 5.200 5.329

m
b

) = XY for the least squares problem.

(5) Using MATLAB, find the co-norm condition number of the coefficient matrix X*X
in the system of normal equations. What does your answer indicate about this system
of equations?

Solution: See MATLAB solutions.

(10) Our standard way of setting up the normal equations corresponds to using the
basis {z,1} for the vector space of linear polynomials. But we could use any other
basis we like too. Suppose we use {300(xz — 1.004), 1} instead (that is, translate and
rescale the x; values). What is the co-norm condition number of the coefficient matrix
in the normal equations now? Show that the best-fit line can still be computed if we
set the problem up this way.

Solution: See MATLAB solutions.
(5) Explain your results in A and B geometrically.

Solution: The idea is that the matrix X*X is nearly singular (this is what the large
condition numbers mean. The lines in R? coming from the two equations in the system

XX <7Z> = XY are nearly parallel. By rescaling (multiplying the z-coordinates

by 300), the slopes are made much smaller, so perturbing the lines shifts the position
of the intersection less in a relative sense. This is indicated by the smaller condition
number of the second matrix.



