Mathematics 372 — Numerical Linear Algebra
Solutions for Final Problem Set
May 9, 2007

I. Some additional properties of matrix norms. Recall that from Theorem 4.2.1 in Watkins,
using the SVD, we know || Al||2 = o1, the largest singular value of A. This gives additional
properties and estimates for the matrix 2-norm.

A) (10) On the midterm problem set, recall that we showed

IAllF < V- [|All2

for all n x n matrices. Show the following more general and sharper form of this
inequality: For all A € M,,xm(R),

[Allr < v/rank(A) - [|Alls.

Solution: Say rank(A) = r. Let A = UXV? be an svd for A. Then by the result of
Exercise 4.2.3,

IAl% = Bl = 01 + -+ + 07 < rof = rank(A)o7 = rank(A)||Al]3.
Taking square roots completes the proof.

B) (10) Show that for all matrices A € My, xm(R),

[All2 < VAl ]| Alloo

(this is sometimes useful for estimating || A||2 without computing it exactly). (Hints:
How are singular values of A related to eigenvalues of A*!A? What happens if you
apply the 1-norm to an equation A*Az = A\z27?)

Solution: The eigenvalues of A*A are the squares of the singular values of A by Exercise
5.2.17. As in the Hint, let z be an eigenvector of A*A with eigenvalue o2, and assume
z has been normalized so ||z||; = 1. Then ||A*Az||; = ||03z||1 = o7. Hence

o1 < ax |A* Az||y = [|A*Ally < [|A*[l1]|Allx = [|Allool| Allx,

w||1=1

(since the matrix 1-norm is the “maximum column sum” and the matrix oo-norm is
the “maximum row sum.”) Taking square roots gives

[A]l2 = o1 < VI[A[l1[[ Al

which is what we wanted to show.



C) (10) Show using MATLAB that the inequalities in parts A and B are satisfied for the
matrix B — Igg, where B is the 60 x 60 bucky matrix.

Solution: For part A, using MATLAB, we find the matrix B — Igp has rank 51, so
|B — Iso||r = 15.4919 < 25.8379 = V51 - || B — Igp||2-

For part B,

IB — Isoll2 = 3.6180 < 4.0 = /|| B|1[| Bl wo-

I1. More on condition numbers. Let n > m. Recall that if A € M« (R), the condition
number £9(A) = 01/0,, measures the susceptibility of the least-squares solution of Az = b
to round-off errors.

A) (10) Show that if an additional column y € R™ is appended to A, to yield

A= (A y) € Mnx(m+1)(R)a

then B B
o1 (A) >o01(A) and oy (A) <om(A4).

What does this say about xq(A) vs. ka(A)?

Solution: Let vy be a singular vector of A corresponding to the largest singular value
(that is, column 1 of the V matrix in an svd). We know Av; = oju; and vy, u; are

U1

unit vectors. Now consider the vector v = ( 0

) € R™*1. Since vy is a unit vector

in R™, this is also a unit vector. We have

ol = 14 9) () ) = 4wl = 02(4)

Hence B B
o1(4) = [|Allz = max [|AT||2 > 01(4),

lIz]l2=1

where the maximum here is over all unit vectors in R™*1.
Similarly, if v, is a singular vector of A corresponding to the smallest singular value
(that is, column m of the V matrix in an svd). We know Av,, = 0y, and vy, Uy,

. . _ v . . .
are unit vectors. Now consider the vector v = < 6" > € R™*1. Since v,, is a unit

vector in R™, this is also a unit vector. We have

5l = 14.) (5 ) Il = vl = o (4).
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Hence
om+1(A) = min [|AZ]2 < om(A),
lz]l2=1
since the minimum here is over all unit vectors in R™*1. (See Exercise 4.2.5 in the
text — that is stated for square matrices, but the same is true in general.)
Finally, combining the two inequalities shown here,

-\ 01(2) 0’1(A) —
w2 )= @) S omA) - A

B) (10) Show that if an additional row, w? for w € R™, is appended to A to yield

— A
A = (’wt) € M(n+1)xm(R)7

then

o1 (4) < \/ol(A)2 + lwl|2 and o (A) > om (A).

What does this say about ka(A) vs. ka(A)?

Solution: We have, taking maximum over vectors z € R™,

01(A) = max ||Az||2

llzll2=1

A
= max [ )zl
lza=1" \ W

Now, by Cauchy-Schwarz, since z is a unit vector,
(w'z)? = (w, 2)* < [|w|3]|z]|3 = [lw]]5.

Moreover, max ||Az||3 = ||A||3 = 01(A)?. Hence,

1(A) < y/or(A)2 + w3,

as claimed.
Using the same formulas as above, for all unit vectors x € R™,

[Azll> = /Il Az]3 + (w, 2)2 > || Az]».

Hence the minimum over all z of || Az|2 must also be greater than or equal to the
minimum over all z of ||Az||z. This shows o, (A) > 0, (A).
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Unlike the situation in part A, we cannot say anything about the relative sizes of

k2(A) and ka(A) here. Either one could be larger.

IT1. An image-processing application of the SVD. A large, detailed, image stored as a matrix
of gray-scale pixel values can take a large amount of storage space. If the information
contained in such an image can be compressed without losing too much image quality, that
is a good thing for transmission and storage. One possible method for image compression
is based on the the theoretical result on SVD’s in part A below. The later parts will show
you how this works in practice.

A) (10) Recall from Theorem 4.1.12 (Exercise 4.1.13) in Watkins that if A = UXV? is an
SVD of A, then if A has rank r,
,
(%) A= Zajujv;-,
j=1

where u; and v; are the columns of the U and V matrices respectively, and o1 > o9 >
--- > o, > 0 as usual. If we keep only the largest k singular values for some k < r,
then the resulting matrix

k
t
(%) A =) ojusul,
i=1
can be thought of as a rank k approzimation to A (this makes especially good sense if
the omitted singular values o1, ...,0, are “small” compared to the others). Prove
that:

(1) ”A - Ak”Z = O0k+1, and
Solution: From (*) and (**) above,

T
A— Ak = E UjUj’U;f.
j=k+1

It follows that the singular values of A — Ay are 041, ...,0, and the rest zero. Since
ok4+1 > oj for j > k + 1, this says ||A — Agll2 = og41-

(2) if A" is any other matrix of rank < k, then

A= All2 > [|A = Agll2.

In words, Ay is the closest matrix to A among all matrices of rank k or less. Hint:
For part (2), show that
N(Al) n Span{’ula AR Uk-i—l} 75 {0}
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and see what A — A’ does to a unit vector in the intersection.
Solution: If rank(A’) < k, then by the fundamental equation
dimrank(A') + dim N (A") = m,

we see dim N (A") > m — k. Now V = N(A') and W = Span{vy,...,vg41} are two
subspaces of R™ with dim(V) +dim(W) > (m—k)+ (k+1) = m+ 1. It follows by a
general linear algebra fact in this situation that VN W # {0} (that is, there is some
nonzero vector in the intersection of the two subspaces). Take any such z € VN W.
We can normalize z to obtain a unit vector (divide z by ||z||2). Then since z € W, we
have

Z=cCv1 + -+ Ck4+1Vk+1

and at least one ¢; # 0. But now, since z € V.= N (A’) as well,

(A-ANz=Az—Az2=A2-0= Az

Then, since vy, ..., V41 and uq, . . ., Ug4+1 are orthogonal unit vectors, by the Pythagorean

Theorem:
(A = A)zllz = [|[Az|l2 = [[A(c1v1 + - - - + Cr1Vk41) |2
= ||cio1u1 + -+ 4 Cht10k41UR+1)]|2
= V(c101)2 + - + (ck410%41)?
> 0k+1\/c% +

= og41/|2]|2

= 0k41-

This implies |A — A’||2 > 0§41, which, when combined with part (1), is what we
wanted to show.

B) (5) One measure of the size of an image A is the total number of real numbers needed
to write the vectors u;,v; and the o; in (*) or (**). If A is 200 x 320 and has rank
200, what is the

) ) size using ()
compression ratio =

size using (x)

achieved if we replace the original expression (*) for A with (**), using k = 5, 10, 20, 257

Solution: With k = 5:

9+ 9 x 200+ 5 x 320
200 + 200 x 200 + 200 x 320

=.025

With k£ = 10:
104+ 10 x 2004+ 10 x 320

=.05
200 + 200 x 200 + 200 x 320
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With k£ = 20:
20 + 20 x 200 + 20 x 320

200 + 200 x 200 + 200 x 320

With k£ = 25:
25+ 25X 200+25%320 _ .

200 + 200 x 200 + 200 x 320

Comment: A fairer comparison might actually be to take the numerator here over the
size of the matrix form of A. For instance with k = 25:

25 + 25 x 200 + 25 x 320
200 x 320

=.2035

By that measure, the “compressed” form with £ = 25 is about 1/5 the size of the
original image in the matrix format.

(10) Using MATLAB, test out this compression scheme using the image file clown.mat:

load clown.mat;
colormap(’gray’);

This will store the image file as a 200 x 320 full matrix called X. You can display the
full image using

image (X)

Now, compute the SVD of X calling the factors U, S, V. To compute the “compressed”
matrices Ag for various k, you can use commands like this:

U(:,1:k)*S(1:k,1:k)*V(:,1:k)’

(you supply the values of k). Note: the MATLAB syntax A(:,a : b) means: form
the submatrix of A taking all rows and columns a through b.) For k = 5,10, 20, 25,
compute Ay, display the resulting images, and comment on how well they represent
the full image (k = 200). As a more precise measure of image quality, also compute
||A — Agl|2 for each of these k values.

Solution: You should have seen that the image quality (judging by eye) steadily im-
proved with k£ = 5,10, 20, 25, until the image with k¥ = 25 was hardly distinguishable
from the original. The precise measures of image quality are (all x103):

|A — As|l = o6 = 1.0699
|A = Asglls = 011 = 6250
| A — Asolls = 091 = .3288
|A — Ass|| = 026 = .2610
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IV. More on iterative methods. Recall that the Jacobi and Gauss-Seidel iterative methods
for square systems Az = b can be derived by splitting the coefficient matrix A as a sum.
The general idea would be to write A = M + N for some square matrices M, N with M
invertible.

A)

B)

(5) Show that however this is done, the resulting iteration can be written as a correc-
tion based on the residual r*) = b — Az (*):

204D — ) 1,00

Solution: The rearrangement to fixed-point form based on the splitting A = M + N
is found by starting from Ax = (M + N)z = b:

z=-M"'Nz+M'b
This leads to the iteration formula
g® ) = M INz®) 4 M,
Now, if we rewrite N as A — M, this becomes
et = MY A - M)z® + M~ =2® + M1 (b — Az®)) = z*) 4 M=)
which is what we wanted to show.
(5) For the remainder of this problem, assume that all eigenvalues of A are real and

non-negative. The method obtained with M = %I for some w >0and N=A— M is
called Richardson’s method. Richardson’s method iteration in the fixed point form is

e+ = (I — wA)z® 4+ wb.

Show that Richardson iteration converges only for w < )\L, where A, 4. is the largest
eigenvalue of A.

Solution: This is similar to one problem from Problem Set/Lab 11. The Richardson

iteration converges if and only if the spectral radius of I — wA is < 1. The spectrum
of this matrix is the set

oI —wA)={1-wr: Aeao(4)}.
Since all A > 0 and w > 0,
o(I —wA) C [l —whnaz, 1 —wWApin] C (—00,1) CR
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for all w. The spectral radius is < 1 only if
2

1l —wWhpaz > —1<=w<
/\ma,il:
C) (10) Show that the omega that minimizes the spectral radius of the “Richardson

G-matrix” I — wA is 5

Wopt = b\ ’

maz T )\mzn
where “opt” stands for “optimal — explain why this would be the best value of w to
use.

Solution: As a function of w, the spectral radius of I — wA is given by the maximum
of |1 — wApaz| and |1 — wApin|. Which one is larger depends on whether 1 — w44
is closer to -1 or 1 — wA,, is closer to 1.

p(I —wA) = max{|1l — wApazl, |1 — WAmin|}

1 = wAmaez! i wApin < 2 — wApas
T = wAmin| i WAin > 2 — WAnae

Plotting the two parts of this function separately on the interval (0,2/Aq2:), We see
that both start at 1 with w = 0. The first is a vee-shaped graph that goes down to
zero at w = 1/Amaz and comes back up to 1 at w = 2/Ajaz- The second is (part
of) a second vee-shaped curve sloping down more gradually from 1 at w = 0, possibly
hitting the w axis, and coming back up to |1 — 2Apin/Amaz| at w = 2/ A6z Note:
this could happen before you hit the “vee,” depending on the exact values of A4z
and A,,;,. The smallest max occurs when the two lines intersect, which is when

2
Amaar: + Amin .

This value is optimal in the sense that the spectral radius is minimized. The smaller
the largest eigenvalue is (in absolute value), the more rapid the convergence will be.

D) (5) Refer to the system from Example 7.2.3 in the text. Using MATLAB, determine
wopt for Richardson on this system, and determine the number of Richardson iterations
needed to yield a solution that is accurate to 8 decimal places using w = .17, wept,
and w = .1.

WAmin = 2 — WAnag = W =

Solution: We have \p,q. = 11.2561, and A, = 3.3182, so

2

Wort = 1179561 + 3.3182

The exact solution is (4,3,2,1)t. Iterations needed for 8 decimal place accuracy:

w=.17 about 224
W = Wept = .1372 about 34
w=.1 about 48.



