
Mathematics 241, section 1 – Multivariable Calculus
Solutions for Exam III – November 26, 2013

I. Given that

f(x, y) =
y

x2 + y2 + 4

fx(x, y) =
−2xy

x2 + y2 + 4)2

fy(x, y) =
x2 − y2 + 4

(x2 + y2 + 4)2

fxx(x, y) =
2y(3x2 − y2 − 4)
(x2 + y2 + 4)3

fxy(x, y) =
−2x(x2 − 3y2 + 4)

(x2 + y2 + 4)3

fyy(x, y) =
−2y(3x2 − y2 + 12)

(x2 + y2 + 4)3
,

find all critical points of f and apply the Second Derivative Test to each to determine the types of
the critical points.

Solution: The critical points are the solutions of fx = fy = 0. From fx = 0, we get either x = 0
or y = 0. There are no solutions of the equation fy = 0 with y = 0, but if x = 0, we get
y = ±2. So the critical points are (0, 2) and (0,−2). At (0, 2), fxx(0, 2)fyy(0, 2) − (fxy(0, 2))2 =
(−1/16)(−1/16) − 02 = 1/256 > 0 and fxx(0, 2) = −1/16 < 0. Therefore, f has a local maximum
at (0, 2). At (0,−2), fxx(0,−2)fyy(0,−2) − (fxy(0,−2))2 = (1/16)(1/16) − 02 = 1/256 > 0. and
fxx(0,−2) = 1/16 > 0. Therefore f has a local minimum at (0,−2).

II.

A) (20) Find the maximum and minimum values of

f(x, y) = xy + 2y

on the closed and bounded set

S = {(x, y) ∈ R2 | x2 + y2 ≤ 9}.

Solution: We have

fx = y

fy = x+ 2
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So f has one critical point at (−2, 0) ∈ S with f(−2, 0) = 0. (This is a saddle point for f).
We use Lagrange Multipliers next. With the constraint equation x2 + y2 = 9, the Lagrange
equations are

y = 2λx
x+ 2 = 2λy

x2 + y2 − 9 = 0.

If we multiply the first equation by y and the second by x, then we can equate the right sides
to obtain an equation in which λ has been eliminated: y2 = x(x+ 2) = x2 + 2x. We can then
use this equation to substitute for the y2 and eliminate y in the constraint equation:

2x2 + 2x− 9 = 0.

This equation can be solved by the quadratic formula:

x =
−2±

√
4 + 72

4
.= −2.68, 1.68.

Then from the constraint equation we get two y-values for each of these x-values, so there
are four solutions, approximately

(−2.68,±1.35), (1.68,±2.49)

We have

f(−2, 0) = 0
f(−2.68, 1.35) .= −.92

f(−2.68,−1.35) .= .92
f(1.68, 2.49) .= −9.2

f(1.68,−2.49) .= 9.2

So putting everything together, we see that the maximum value of f on S is about 9.2 and
the minimum value of f on S is about −9.2.

B) (5) Give a sketch of the contours of f for the maximum and minimum values you found in
part A.

Solution: The function is f(x, y) = (x+ 2)y. Hence the contours of f for values not equal to
zero are rectangular hyperbolas with asymptotes equal to the lines x = −2 and y = 0.
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The graphs shows two hyperbolas, each tangent to the boundary circle of S at the points
where the maximum and minimum values are attained. The relevant portions of the branches
of the hyperbolas are in the first and fourth quadrants of the plane. (Recall the geometry of
Lagrange Multipliers we saw in the Lab portion of Problem Set 7.)

III. All parts of this problem refer to the region

R = {(x, y) ∈ R2 | x2 + y2 ≤ 4, y ≥ 0, y ≤ 2x}.

and the solid S ⊂ R3 with upper boundary z = x2 and lower boundary the xy-plane and the
“shadow” of S in the xy-plane is R.

A) (10) Sketch the region R in the plane.

Solution: This is the region inside a circle of radius 2, above the x-axis, and below the line
y = 2x: Note: the region lies entirely in the first quadrant.

B) (10) Set up iterated integral(s) of the form
∫ ∫

f(x, y) dy dx to compute the volume of S. Do
not compute the value.

Solution: Since the upper boundary of R changes when y = 2x crosses the circle, we need
the sum of two interated integrals. The line y = 2x crosses x2 + y2 = 4 when 5x2 = 4 so
x = ±2/

√
5. Since our region is entirely in the first quadrant, it’s∫ 2/

√
5

0

∫ 2x

0
x2 dy dx+

∫ 2

2/
√

5

∫ √4−x2

0
x2 dy dx.
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C) (10) Now set up iterated integral(s) of the form
∫ ∫

f(x, y) dx dy to compute the volume of
S. Do not compute the value.

Solution: This one is slightly tricky because you have to notice that, even though the integral
does not need to be split, the region R does not extend all the way up to y = 2. The range
of y-values is determined like this: The line y = 2x crosses x2 + y2 = 4 when 5x2 = 4 so
x = 2/

√
5 and y = 4/

√
5. The integral is:∫ 4/

√
5

0

∫ √4−y2

y/2
x2 dx dy.

D) (10) Finally, set up a polar coordinate integral that will compute the volume of S. Do not
compute the value.

Solution: With polar coordinates, you do not need to split into two integrals, and the limits
of integration are all constant. The part of the line y = 2x in the first quadrant is the ray
θ = arctan(2). With the “extra r” from the dA in polar coordinates:∫ arctan(2)

0

∫ 2

0
r3 cos2 θ dr dθ.

E) (10) Finally, compute the volume of S using any one of your answers from parts B,C,D (your
choice).

Solution: Don’t know about you, but the first two look pretty bad to me! Let’s evaluate the
last one: ∫ arctan(2)

0

∫ 2

0
r3 cos2 θ dr dθ =

∫ 2

0
r3 dr ·

∫ arctan(2)

0
cos2 θ dθ

=
r4

4

∣∣∣∣2
0

·
(
θ

2
+

sin(2θ)
4

)∣∣∣∣arctan(2)

0

= 4 ·
(

1
2

arctan(2) +
1
5

)
.

Extra Credit (10) Evaluate the improper double integral∫ ∫
R2

e1−x
2−y2 dA =

∫ ∞
−∞

∫ ∞
−∞

e1−x
2−y2 dy dx.

We can evaluate this by switching to polar coordinates! The integral over all of R2 is∫ 2π

0

∫ ∞
0

e1−r
2
r dr dθ
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This equals

2π · lim
B→∞

−1
2
e1−r

2

∣∣∣∣B
0

= 2π · lim
B→∞

(
e

2
− 1

2
e1−B

2

)
= πe.

Wow!
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