Mathematics 241 - Multivariable Calculus Solutions for Final Examination - December 14, 2013
I. In this problem, $P=(1,0,1), Q=(-2,3,2)$, and $R=(1,2,0)$.
A) Find the equation of the plane containing the points P, Q, R in \mathbf{R}^{3}.

Solution: The displacement vector from P to Q is $\mathbf{v}=Q-P=(-3,3,1)$ and the vector from P to R is $\mathbf{w}=R-P=(0,2,-1)$. For the plane we can take $N=(-3,3,1) \times(0,2,-1)=(-5,-3,-6)$. Then the equation of the plane is $0=$ $N \cdot(x-1, y-0, z-1)=-5 x+5-3 y-6 z+6$, or $5 x+3 y+6 z=11$.
B) At what point does the line containing P, Q meet the $x y$-plane?

Solution: The line is $(1,0,1)+(-3,3,1) t=(1-3 t, 3 t, 1+t)$. This meets the $x y$-plane when $z=1+t=0$, so $t=-1$. The point of intersection is $(4,-3,0)$.
C) If \mathbf{v} is the displacement vector from P to Q and \mathbf{w} is the displacement vector from P to R, at what angle do \mathbf{v}, \mathbf{w} meet?
Solution: The angle θ satisfies $\cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{5}{\sqrt{19} \sqrt{5}}$. So

$$
\theta=\cos ^{-1}(\sqrt{5 / 19}) \doteq 1.032 \text { radians }
$$

II. All parts of this problem refer to the parametric curve

$$
\alpha(t)=\left(\frac{\cos (t)}{\sin ^{2}(t)+1}, \frac{\cos (t) \sin (t)}{1+\sin ^{2}(t)}\right)
$$

defined for all $t \in[0,2 \pi]$, called a lemniscate.
A) Is $\alpha(t)$ a simple closed curve? (Hint: Thinking of $\alpha(t)$ as the position of a moving object as a function of time, are there different times $t \in[0,2 \pi)$ at which the object is at the location $(x, y)=(0,0) ?$)
Solution: We have $\alpha(0)=\left(\frac{1}{2}, 0\right)=\alpha(2 \pi)$, so this is a closed curve. However, $\cos (t)=0=\cos (t) \sin (t)$ for $t=\frac{\pi}{2}$ and $t=\frac{3 \pi}{2}$ in the given interval. Since there are two such t, the answer to the first question is $N O$.
B) What is the tangent vector to the curve at $t=\pi$?

Solution: By the quotient rule in each component,

$$
\begin{aligned}
\alpha^{\prime}(t)= & \frac{1}{\left(1+\sin ^{2}(t)\right)^{2}}\left(-\left(1+\sin ^{2}(t)\right) \sin (t)-2 \cos ^{2}(t) \sin (t)\right. \\
& \left.\left(1+\sin ^{2}(t)\right)\left(\cos ^{2}(t)-\sin ^{2}(t)\right)-2 \cos ^{2}(t) \sin ^{2}(t)\right)
\end{aligned}
$$

When $t-\pi$, we get $\alpha^{\prime}(\pi)=(0,1)$
C) A thin wire has the shape of the portion of the curve α for $t \in[0,1]$. What integral would you use to compute its arc length. (You do not need to evaluate!)

Solution: The arc length would be computed by

$$
M=\int_{0}^{1} d s=\int_{0}^{1}\left\|\alpha^{\prime}(t)\right\| d t
$$

III. All parts of this problem refer to $f(x, y)=(x+1)^{2}+y^{2}$.
A) Sketch the level curves of $f(x, y)$ for the values $c=1,4,9$.

Solution: The level curves of f are circles with center at $(-1,0)$ the radii are $r=1,2,3$ respectively.
B) At the point $(1,2)$, in which direction is f increasing the fastest? Express your answer as a unit direction vector.

Solution: This is in the direction of the gradient vector $\nabla f(1,2)$. The gradient vector is $\nabla f(x, y)=(2(x+1), 2 y)$ at a general point. So $\nabla f(1,2)=(4,4)$. The unit vector in this direction is $\frac{1}{4 \sqrt{2}}(4,4)=(\sqrt{2} / 2, \sqrt{2} / 2)$.
C) Find the points on the curve $g(x, y)=\frac{x^{2}}{4}+y^{2}=1$ at which $f(x, y)$ takes its largest and smallest values. What is true about the vectors ∇f and ∇g at your points?
Solution: Using the Lagrange multiplier method, we must solve

$$
\begin{aligned}
2(x+1) & =\lambda x / 2 \\
2 y & =2 \lambda y \\
\frac{x^{2}}{4}+y^{2} & =1
\end{aligned}
$$

From the second equation, $y=0$ or $\lambda=1$. If $y=0$, the constraint equation gives $x= \pm 2$, so we obtain two points $(\pm 2,0)$. If $\lambda=1$, then from the first equation, $2(x+1)=x / 2$, so $x=-4 / 3$. Then from the constraint equation we get $y= \pm \sqrt{5} / 3$. To determine which of these give maximum and minimum values, we substitute into $f(x, y)$:

$$
\begin{aligned}
f(2,0) & =9 \text { (maximum) } \\
f(-2,0) & =1 \\
f(-4 / 3, \pm \sqrt{5} / 3) & =1 / 9+5 / 9=2 / 3 \text { (minimum) }
\end{aligned}
$$

The points we found here are the points where the level curve of f passing through that point and the constraint curve are tangent.
IV. Let $f(x, y)=x e^{-2 x^{2}-y^{2}}$.
A) Find the equation of the tangent plane to the graph $z=f(x, y)$ at the point $\left(1,1, e^{-3}\right)$.

Solution: We must compute the partial derivatives to start:

$$
\begin{aligned}
& f_{x}=\left(1-4 x^{2}\right) e^{-2 x^{2}-y^{2}} \\
& f_{y}=-2 x y e^{-2 x^{2}-y^{2}}
\end{aligned}
$$

$$
\text { At } \begin{aligned}
(x, y)=(1,1), f_{x}(1,1) & =-3 e^{-3}, \text { and } f_{y}(1,1)=-2 e^{-3}, \text { so the tangent plane is } \\
z & =e^{-3}-3 e^{-3}(x-1)-2 e^{-3}(y-1) .
\end{aligned}
$$

B) Find all the critical points of $f(x, y)$.

Solution: The critical points are the solutions of $f_{x}=0$ and $f_{y}=0$. Using the formulas for f_{x}, f_{y} from part A, we see that $f_{x}=0$ when $x= \pm 1 / 2$ and $f_{y}=0$ when $x=0$ or $y=0$ (Note: the exponential factor is never zero.) Hence the simultaneous solutions are the two points $(\pm 1 / 2,0)$.
C) Use the second derivative test (Hessian criterion) to determine the type of each critical point you found in part B.

Solution: Now we need the second-order partial derivatives as well:

$$
\begin{aligned}
& f_{x x}=\left(16 x^{3}-12 x\right) e^{-2 x^{2}-y^{2}} \\
& f_{x y}=\left(1-4 x^{2}\right)(-2 y) e^{-2 x^{2}-y^{2}} \\
& f_{y y}=-2 x\left(1-2 y^{2}\right) e^{-2 x^{2}-y^{2}}
\end{aligned}
$$

So at $(1 / 2,0)$ the Hessian matrix is

$$
\left(\begin{array}{cc}
-4 e^{-1 / 2} & 0 \\
0 & -e^{-1 / 2}
\end{array}\right)
$$

The determinant is $4 e^{-1}>0$ and the upper left entry is <0 so this is a local maximum. At $(-1 / 2,0)$ the Hessian matrix is

$$
\left(\begin{array}{cc}
4 e^{-1 / 2} & 0 \\
0 & e^{-1 / 2}
\end{array}\right)
$$

The determinant is $4 e^{-1}>0$ and the upper left entry is >0 so this is a local minimum.
V. A region R in \mathbf{R}^{2} is the set of points satisfying $x^{2}+y^{2} \geq 1, y \geq x, x \geq 0$, and $y \leq 4$.
A) Sketch the region R.

Solution: This is the region outside the unit circle with center $(0,0)$, to the right of the y-axis, below the horizontal line $y=4$, and above the line $y=x$.
B) Set up the limits of integration of iterated integral(s) to compute $\iint_{R} f(x, y) d A$ integrating with respect to x first, then y.
Solution: The circle intersects the line $y=x$ at $(\sqrt{2} / 2, \sqrt{2} / 2)$. From there to the top of the circle at $y=1$, the left boundary of the region is part of the circle. For $y>1$, though, the left boundary is part of the y-axis so we have to split the integral at $y=1$:

$$
\int_{\sqrt{2} / 2}^{1} \int_{\sqrt{1-y^{2}}}^{y} f(x, y) d x d y+\int_{1}^{4} \int_{0}^{y} f(x, y) d x d y
$$

C) Now reverse the order of the variables and set up iterated integral(s) to compute the same integral, but integrating with respect to y first, then x.

Solution: We also need to split the integral this way since the bottom boundary changes at $x=\sqrt{2} / 2$. The region extends all the way to $x=4$ on the right, where the line $y=4$ intersects $y=x$:

$$
\int_{0}^{\sqrt{2} / 2} \int_{\sqrt{1-x^{2}}}^{4} f(x, y) d y d x+\int_{\sqrt{2} / 2}^{4} \int_{x}^{4} f(x, y) d y d x
$$

VI. (20) The metal making up a solid half-cone in the shape of

$$
H=\left\{(x, y, z) \in \mathbf{R}^{3} \mid z^{2} \geq x^{2}+y^{2}, 0 \leq z \leq 1, y \geq 0\right\}
$$

has density $\delta(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at all points. Determine its total mass. (Hint: a wise choice of coordinate system will simplify this one immensely!)

Solution: We will set up the triple integral to compute the mass using spherical coordinates, since the spherical equation of the boundary cone is $\phi=1$. The restriction $y \geq 0$ says $0 \leq \theta \leq \pi$. The plane $z=1$ is $\rho \cos \phi=1$, so $\rho=\sec \phi$. In spherical coordinates, the density is just $d=\rho$. So the total mass is

$$
\begin{aligned}
M & =\int_{0}^{\pi} \int_{0}^{\pi / 4} \int_{0}^{\sec \phi} \rho^{3} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{\pi / 4} \int_{0}^{\sec \phi} \rho^{3} \sin \phi d \rho d \phi d \theta \\
& =\left.\int_{0}^{\pi} \int_{0}^{\pi / 4} \frac{\rho^{4}}{4}\right|_{0} ^{\sec \phi} \sin \phi d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{\pi / 4} \frac{\sin \phi}{4 \cos ^{4} \phi} d \phi d \theta \quad\left(u^{-4} d u\right) \\
& =\left.\pi \frac{1}{12 \cos ^{3}(\phi)}\right|_{0} ^{\pi / 4} \\
& =\frac{\pi}{12}(2 \sqrt{2}-1)
\end{aligned}
$$

VII.
A) State Green's Theorem.

Solution: If D is a region in \mathbf{R}^{2} bounded by a finite collection of simple closed curves, ∂D is the positively-oriented boundary of D, and $\mathbf{F}(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$ is a C^{1} vector field on D, then

$$
\oint_{\partial D} F \cdot T d s=\oint_{\partial D} F_{1} d x+F_{2} d y=\iint_{D} \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y} d A .
$$

B) (10) Let $\mathbf{F}(x, y)=\left(x-y^{2}, x^{2}+y\right)$. Verify that Green's Theorem holds for the region $D=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2} \leq 9\right\}$.
Solution: Using the standard parametrization $(x, y)=(3 \cos (t), 3 \sin (t))$ of the boundary circle of D,

$$
\begin{aligned}
\oint_{\partial D} F_{1} d x+F_{2} d y= & \int_{0}^{2 \pi}\left(3 \cos (t)-9 \sin ^{2}(t)\right)(-3 \sin (t)) \\
& +\left(9 \cos ^{2}(t)+3 \sin (t)\right)(3 \cos (t)) d t \\
= & 27 \int_{0}^{2 \pi} \sin ^{3}(t)+\cos ^{3}(t) d t \\
= & \left.27\left(-\frac{2}{3} \cos (t)-\frac{1}{3} \sin ^{2}(t) \cos (t)+\frac{2}{3} \sin (t)+\frac{1}{3} \cos ^{2}(t) \sin (t)\right)\right|_{0} ^{2 \pi} \\
= & 0
\end{aligned}
$$

The double integral over D is

$$
\iint_{D}\left(F_{2}\right)_{x}-\left(F_{1}\right)_{y} d A=\iint_{D} 2 x+2 y d A
$$

This can be evaluated in a number of ways. Switching to polar coordinates, for instance,

$$
=\int_{0}^{2 \pi} \int_{0}^{3} 2 r^{2}(\cos \theta+\sin \theta) d r d \theta=0
$$

since both $\int_{0}^{2 \pi} \cos \theta d \theta=0$ and $\int_{0}^{2 \pi} \sin \theta d \theta=0$.
VIII. A function $f(x, y)$ is said to be harmonic on an open set U in \mathbf{R}^{2} if it satisfies the equation

$$
f_{x x}+f_{y y}=0
$$

at all points in U.
A) How does a nondegenerate critical point of a harmonic function fit into our classification? Is it a local maximum, local minimum, or a saddle point? Explain how you can tell from the second derivative test.

Solution: Every nondegenerate critical point of a harmonic function is a saddle point because the Hessian matrix is

$$
D^{2}(f)=\left(\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{x y} & -f_{x x}
\end{array}\right)
$$

The determinant here is $-\left(f_{x x}\right)^{2}-\left(f_{x y}\right)^{2}<0$.
B) If f is harmonic, what is true about the line integral of the vector field

$$
\mathbf{F}(x, y)=\left(-f_{y}, f_{x}\right)
$$

around any simple closed curve in U ?
Solution: Let D be the region bounded by the simple closed curve. By Green's theorem, the integral is equal to

$$
\iint_{D}\left(f_{x}\right)_{x}-\left(-f_{y}\right)_{y} d A=\iint_{D} f_{x x}+f_{y y} d A=0
$$

Extra Credit (10)

Suppose you follow a flow line of the vector field $-\nabla f$ for $f(x, y)$ in the $x y$-plane. As you traverse the flow line in the increasing t-direction, is the corresponding path on the graph $z=f(x, y)$ going uphill or downhill? Explain. What does the vector field $-\nabla f$ look like near a local maxmimum of f ? near a local minimum of f ?

Solution: You are always going downhill by the most direct route - recall $\nabla f(a, b)$ gives the direction in which f is increasing the fastest. The negative gradient vector field near a local maximum will have all arrows pointing away from the critical point (flow lines will diverge from the maximum). Near a local minimum, the negative gradient vector field will be pointing toward from the crirical point (flow lines will be converging toward the minimum).

Have a peaceful and joyous holiday season!

