
Mathematics 241 – Multivariable Calculus
Solutions for Final Examination – December 14, 2013

I. In this problem, P = (1, 0, 1), Q = (−2, 3, 2), and R = (1, 2, 0).

A) Find the equation of the plane containing the points P, Q, R in R
3.

Solution: The displacement vector from P to Q is v = Q − P = (−3, 3, 1) and
the vector from P to R is w = R − P = (0, 2,−1). For the plane we can take
N = (−3, 3, 1) × (0, 2,−1) = (−5,−3,−6). Then the equation of the plane is 0 =
N · (x − 1, y − 0, z − 1) = −5x + 5 − 3y − 6z + 6, or 5x + 3y + 6z = 11.

B) At what point does the line containing P, Q meet the xy-plane?

Solution: The line is (1, 0, 1)+(−3, 3, 1)t = (1−3t, 3t, 1+t). This meets the xy-plane
when z = 1 + t = 0, so t = −1. The point of intersection is (4,−3, 0).

C) If v is the displacement vector from P to Q and w is the displacement vector from P
to R, at what angle do v,w meet?

Solution: The angle θ satisfies cos θ = v·w
‖v‖‖w‖ = 5√

19
√

5
. So

θ = cos−1

(

√

5/19
)

.
= 1.032 radians.

II. All parts of this problem refer to the parametric curve

α(t) =

(

cos(t)

sin2(t) + 1
,
cos(t) sin(t)

1 + sin2(t)

)

defined for all t ∈ [0, 2π], called a lemniscate.
A) Is α(t) a simple closed curve? (Hint: Thinking of α(t) as the position of a moving

object as a function of time, are there different times t ∈ [0, 2π) at which the object
is at the location (x, y) = (0, 0)?)

Solution: We have α(0) =
(

1

2
, 0

)

= α(2π), so this is a closed curve. However,
cos(t) = 0 = cos(t) sin(t) for t = π

2
and t = 3π

2
in the given interval. Since there are

two such t, the answer to the first question is NO.
B) What is the tangent vector to the curve at t = π?

Solution: By the quotient rule in each component,

α′(t) =
1

(1 + sin2(t))2
(−(1 + sin2(t)) sin(t) − 2 cos2(t) sin(t),

(1 + sin2(t))(cos2(t) − sin2(t)) − 2 cos2(t) sin2(t))

When t − π, we get α′(π) = (0, 1)
C) A thin wire has the shape of the portion of the curve α for t ∈ [0, 1]. What integral

would you use to compute its arc length. (You do not need to evaluate!)
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Solution: The arc length would be computed by

M =

∫ 1

0

ds =

∫ 1

0

‖α′(t)‖dt

III. All parts of this problem refer to f(x, y) = (x + 1)2 + y2.

A) Sketch the level curves of f(x, y) for the values c = 1, 4, 9.

Solution: The level curves of f are circles with center at (−1, 0) the radii are r = 1, 2, 3
respectively.

B) At the point (1, 2), in which direction is f increasing the fastest? Express your answer
as a unit direction vector.

Solution: This is in the direction of the gradient vector ∇f(1, 2). The gradient vector
is ∇f(x, y) = (2(x + 1), 2y) at a general point. So ∇f(1, 2) = (4, 4). The unit vector
in this direction is 1

4
√

2
(4, 4) = (

√
2/2,

√
2/2).

C) Find the points on the curve g(x, y) = x2

4
+ y2 = 1 at which f(x, y) takes its largest

and smallest values. What is true about the vectors ∇f and ∇g at your points?

Solution: Using the Lagrange multiplier method, we must solve

2(x + 1) = λx/2

2y = 2λy

x2

4
+ y2 = 1

From the second equation, y = 0 or λ = 1. If y = 0, the constraint equation gives
x = ±2, so we obtain two points (±2, 0). If λ = 1, then from the first equation,
2(x + 1) = x/2, so x = −4/3. Then from the constraint equation we get y = ±

√
5/3.

To determine which of these give maximum and minimum values, we substitute into
f(x, y):

f(2, 0) = 9 (maximum)

f(−2, 0) = 1

f(−4/3,±
√

5/3) = 1/9 + 5/9 = 2/3 (minimum)

The points we found here are the points where the level curve of f passing through
that point and the constraint curve are tangent.

IV. Let f(x, y) = xe−2x2−y2

.

A) Find the equation of the tangent plane to the graph z = f(x, y) at the point (1, 1, e−3).

Solution: We must compute the partial derivatives to start:

fx = (1 − 4x2)e−2x2−y2

fy = −2xye−2x2−y2

.
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At (x, y) = (1, 1), fx(1, 1) = −3e−3, and fy(1, 1) = −2e−3, so the tangent plane is

z = e−3 − 3e−3(x − 1) − 2e−3(y − 1).

B) Find all the critical points of f(x, y).

Solution: The critical points are the solutions of fx = 0 and fy = 0. Using the
formulas for fx, fy from part A, we see that fx = 0 when x = ±1/2 and fy = 0 when
x = 0 or y = 0 (Note: the exponential factor is never zero.) Hence the simultaneous
solutions are the two points (±1/2, 0).

C) Use the second derivative test (Hessian criterion) to determine the type of each critical
point you found in part B.

Solution: Now we need the second-order partial derivatives as well:

fxx = (16x3 − 12x)e−2x2−y2

fxy = (1 − 4x2)(−2y)e−2x2−y2

fyy = −2x(1 − 2y2)e−2x2−y2

So at (1/2, 0) the Hessian matrix is

(

−4e−1/2 0
0 −e−1/2

)

The determinant is 4e−1 > 0 and the upper left entry is < 0 so this is a local maximum.
At (−1/2, 0) the Hessian matrix is

(

4e−1/2 0
0 e−1/2

)

The determinant is 4e−1 > 0 and the upper left entry is > 0 so this is a local minimum.

V. A region R in R
2 is the set of points satisfying x2 + y2 ≥ 1, y ≥ x, x ≥ 0, and y ≤ 4.

A) Sketch the region R.

Solution: This is the region outside the unit circle with center (0, 0), to the right of
the y-axis, below the horizontal line y = 4, and above the line y = x.

B) Set up the limits of integration of iterated integral(s) to compute
∫ ∫

R
f(x, y) dA

integrating with respect to x first, then y.

Solution: The circle intersects the line y = x at (
√

2/2,
√

2/2). From there to the
top of the circle at y = 1, the left boundary of the region is part of the circle. For
y > 1, though, the left boundary is part of the y-axis so we have to split the integral
at y = 1:

∫

1

√
2/2

∫ y

√
1−y2

f(x, y) dx dy +

∫

4

1

∫ y

0

f(x, y) dx dy.
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C) Now reverse the order of the variables and set up iterated integral(s) to compute the
same integral, but integrating with respect to y first, then x.

Solution: We also need to split the integral this way since the bottom boundary
changes at x =

√
2/2. The region extends all the way to x = 4 on the right, where

the line y = 4 intersects y = x:

∫

√
2/2

0

∫

4

√
1−x2

f(x, y) dy dx +

∫

4

√
2/2

∫

4

x

f(x, y) dy dx.

VI. (20) The metal making up a solid half-cone in the shape of

H = {(x, y, z) ∈ R
3 | z2 ≥ x2 + y2, 0 ≤ z ≤ 1, y ≥ 0}

has density δ(x, y, z) =
√

x2 + y2 + z2 at all points. Determine its total mass. (Hint: a
wise choice of coordinate system will simplify this one immensely!)

Solution: We will set up the triple integral to compute the mass using spherical

coordinates, since the spherical equation of the boundary cone is φ = 1. The restriction
y ≥ 0 says 0 ≤ θ ≤ π. The plane z = 1 is ρ cosφ = 1, so ρ = sec φ. In spherical
coordinates, the density is just d = ρ. So the total mass is

M =

∫ π

0

∫ π/4

0

∫

sec φ

0

ρ3 sin φ dρ dφ dθ

=

∫ π

0

∫ π/4

0

∫

sec φ

0

ρ3 sin φdρ dφ dθ

=

∫ π

0

∫ π/4

0

ρ4

4

∣

∣

∣

∣

sec φ

0

sin φ dφ dθ

=

∫ π

0

∫ π/4

0

sin φ

4 cos4 φ
dφ dθ (u−4du)

= π
1

12 cos3(φ)

∣

∣

∣

∣

π/4

0

=
π

12
(2
√

2 − 1)

VII.

A) State Green’s Theorem.

Solution: If D is a region in R
2 bounded by a finite collection of simple closed curves,

∂D is the positively-oriented boundary of D, and F(x, y) = (F1(x, y), F2(x, y)) is a
C1 vector field on D, then

∮

∂D

F · T ds =

∮

∂D

F1dx + F2dy =

∫ ∫

D

∂F2

∂x
− ∂F1

∂y
dA.
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B) (10) Let F(x, y) = (x− y2, x2 + y). Verify that Green’s Theorem holds for the region
D = {(x, y) ∈ R

2 : x2 + y2 ≤ 9}.
Solution: Using the standard parametrization (x, y) = (3 cos(t), 3 sin(t)) of the bound-
ary circle of D,

∮

∂D

F1dx + F2dy =

∫

2π

0

(3 cos(t) − 9 sin2(t))(−3 sin(t))

+ (9 cos2(t) + 3 sin(t))(3 cos(t)) dt

= 27

∫

2π

0

sin3(t) + cos3(t) dt

= 27

(

−2

3
cos(t) − 1

3
sin2(t) cos(t) +

2

3
sin(t) +

1

3
cos2(t) sin(t)

)
∣

∣

∣

∣

2π

0

= 0.

The double integral over D is

∫ ∫

D

(F2)x − (F1)y dA =

∫ ∫

D

2x + 2y dA.

This can be evaluated in a number of ways. Switching to polar coordinates, for
instance,

=

∫

2π

0

∫

3

0

2r2(cos θ + sin θ) dr dθ = 0

since both
∫

2π

0
cos θ dθ = 0 and

∫

2π

0
sin θ dθ = 0.

VIII. A function f(x, y) is said to be harmonic on an open set U in R
2 if it satisfies the

equation
fxx + fyy = 0

at all points in U .
A) How does a nondegenerate critical point of a harmonic function fit into our classifica-

tion? Is it a local maximum, local minimum, or a saddle point? Explain how you can
tell from the second derivative test.

Solution: Every nondegenerate critical point of a harmonic function is a saddle point

because the Hessian matrix is

D2(f) =

(

fxx fxy

fxy fyy

)

=

(

fxx fxy

fxy −fxx

)

.

The determinant here is −(fxx)2 − (fxy)2 < 0.

B) If f is harmonic, what is true about the line integral of the vector field

F(x, y) = (−fy, fx)
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around any simple closed curve in U?

Solution: Let D be the region bounded by the simple closed curve. By Green’s
theorem, the integral is equal to

∫ ∫

D

(fx)x − (−fy)y dA =

∫ ∫

D

fxx + fyy dA = 0.

Extra Credit (10)

Suppose you follow a flow line of the vector field −∇f for f(x, y) in the xy-plane. As
you traverse the flow line in the increasing t-direction, is the corresponding path on the
graph z = f(x, y) going uphill or downhill? Explain. What does the vector field −∇f look
like near a local maxmimum of f? near a local minimum of f?

Solution: You are always going downhill by the most direct route – recall ∇f(a, b)
gives the direction in which f is increasing the fastest. The negative gradient vector
field near a local maximum will have all arrows pointing away from the critical point
(flow lines will diverge from the maximum). Near a local minimum, the negative
gradient vector field will be pointing toward from the crirical point (flow lines will be
converging toward the minimum).

Have a peaceful and joyous holiday season!
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