Mathematics 241 — Multivariable Calculus
Solutions for Final Examination — December 14, 2013

L. In this problem, P = (1,0,1), @ = (—2,3,2), and R = (1,2,0).
A) Find the equation of the plane containing the points P, Q, R in R3.

Solution: The displacement vector from P to @ is v = Q — P = (=3,3,1) and
the vector from P to R is w = R— P = (0,2,—1). For the plane we can take
N = (-3,3,1) x (0,2,—1) = (=5,—3,—6). Then the equation of the plane is 0 =
N-(x—1,y—0,z—1)= —-5x+5—3y — 62+ 6, or bz + 3y + 6z = 11.

B) At what point does the line containing P, ) meet the zy-plane?
Solution: The line is (1,0,1)+(—3,3,1)t = (1 —3t, 3t, 1+t). This meets the zy-plane
when z =1+t =0, sot = —1. The point of intersection is (4, —3,0).

Comment: Several people substituted the parametrization into the equation of the plane
from part A. Read questions more carefully, and don’t just memorize a sample problem
from a practice exam!

C) If v is the displacement vector from P to () and w is the displacement vector from P
to R, at what angle do v, w meet?

V-w

. . . _ _ 5
Solution: The angle 6 satisfies cosf = Wl = V575

6 = cos ™! (\/5/19) = 1.032 radians.

So

II. All parts of this problem refer to the parametric curve

B cos(t)  cos(t)sin(t)
alt) = (sinQ(t) +17 1+ sin?(t) )

defined for all t € [0, 27], called a lemniscate.

A) Is a(t) a simple closed curve? (Hint: Thinking of «(t) as the position of a moving
object as a function of time, are there different times ¢ € [0,27) at which the object
is at the location (z,y) = (0,0)?)

Solution: We have a(0) = (3,0) = a(27), so this is a closed curve. However,
cos(t) = 0 = cos(t)sin(t) for t = F and ¢ = 37 in the given interval. Since there are

two such t, the answer to the first question is NO.
B) What is the tangent vector to the curve at ¢t = 7?

Solution: By the quotient rule in each component,

o (t) = ! S(—(1+ sin?(t)) sin(t) — 2 cos®(t) sin(t),

(1 + sin?(t))
(1 + sin?(t))(cos?(t) — sin®(t)) — 2 cos?(¢) sin?(t))
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When t — 7, we get o/ (m) = (0,1)
C) A thin wire has the shape of the portion of the curve « for ¢t € [0,1]. What integral
would you use to compute its arc length. (You do not need to evaluate!)

Solution: The arc length would be computed by

1 1
M:/ ds:/ o (2)]| it
0 0

I11. All parts of this problem refer to f(x,y) = (z +1)? + 3%
A) Sketch the level curves of f(x,y) for the values ¢ = 1,4,9.

Solution: The level curves of f are circles with center at (—1,0) the radii arer = 1,2,3
respectively.

B) At the point (1,2), in which direction is f increasing the fastest? Express your answer
as a unit direction vector.

Solution: This is in the direction of the gradient vector V f(1,2). The gradient vector
is Vf(z,y) = (2(x 4+ 1),2y) at a general point. So Vf(1,2) = (4,4). The unit vector
in this direction is ;2=(4,4) = (vV2/2,v2/2).

C) Find the points on the curve g(z,y) = % +y? =1 at which f(x,y) takes its largest
and smallest values. What is true about the vectors V f and Vg at your points?

Solution: Using the Lagrange multiplier method, we must solve

2x+1) = Az/2
2y = 2)\y

2
x 2
- -1
Y

From the second equation, y = 0 or A = 1. If y = 0, the constraint equation gives
x = %2, so we obtain two points (+2,0). If A = 1, then from the first equation,
2(x + 1) = /2, so x = —4/3. Then from the constraint equation we get y = ++/5/3.
To determine which of these give maximum and minimum values, we substitute into

[z, y):
f(2,0) =9 (maximum)

f(=2,0)=1
f(—4/3,+v5/3) = 1/9 +5/9 = 2/3 (minimum)

The points we found here are the points where the level curve of f passing through
that point and the constraint curve are tangent.

IV. Let f(z,y) = we 22" V",

A) Find the equation of the tangent plane to the graph z = f(z,y) at the point (1,1, e73).
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Solution: We must compute the partial derivatives to start:

fo=(1—d2?)e 2

fy = —293ye‘2x2_y2 .

At (z,y) = (1,1), fz(1,1) = =3e73, and f,(1,1) = —2e¢3, so the tangent plane is
z=e? =3P (x—1) -2 3(y —1).

B) Find all the critical points of f(x,y).

Solution: The critical points are the solutions of f, = 0 and f, = 0. Using the
formulas for f,, f, from part A, we see that f, =0 when x = £1/2 and f, = 0 when
x =0 or y =0 (Note: the exponential factor is never zero.) Hence the simultaneous
solutions are the two points (£1/2,0).

C) Use the second derivative test (Hessian criterion) to determine the type of each critical
point you found in part B.

Solution: Now we need the second-order partial derivatives as well:

2

fre = (162° — 123:)6_2”‘2_9
fmy — (1 o 4x2)(_2y)6—2m2_y2
Foy = —2a(1 — 2y%)e 2"~

So at (1/2,0) the Hessian matrix is

—4e~1/2 0
0 —e1/2

The determinant is 4e~! > 0 and the upper left entry is < 0 so this is a local mazimum.
At (—1/2,0) the Hessian matrix is

4e~1/2 0
0 6_1/2

The determinant is 4e ' > 0 and the upper left entry is > 0 so this is a local minimum.

V. A region R in R? is the set of points satisfying 2? +y2 > 1,y >z, >0, and y < 4.
A) Sketch the region R.

Solution: This is the region outside the unit circle with center (0,0), to the right of
the y-axis, below the horizontal line y = 4, and above the line y = x.

B) Set up the limits of integration of iterated integral(s) to compute ffR flx,y) dA
integrating with respect to x first, then y.
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Solution: The circle intersects the line y = z at (v/2/2,v/2/2). From there to the
top of the circle at y = 1, the left boundary of the region is part of the circle. For
y > 1, though, the left boundary is part of the y-axis so we have to split the integral

at y = 1:
1 y 4 ry
dx d dx dy.
/ﬁﬂ/@f(w,y) T y+/1 /0 f(x,y) dz dy

C) Now reverse the order of the variables and set up iterated integral(s) to compute the
same integral, but integrating with respect to y first, then z.

Solution: We also need to split the integral this way since the bottom boundary
changes at © = v/2/2. The region extends all the way to z = 4 on the right, where
the line y = 4 intersects y = x:

V2/2 4 4 4
/ / f(x,y) dy dw+/ / f(z,y) dy dx.
0 Vi—z? Vv2/2Jx

VI. (20) The metal making up a solid half-cone in the shape of
H={(z,y,2) eR? |22 >2*+94%,0< 2 <1,y >0}

has density d(z,y,2) = /22 + y? + 22 at all points. Determine its total mass. (Hint: a
wise choice of coordinate system will simplify this one immensely!)

Solution: We will set up the triple integral to compute the mass using spherical
coordinates, since the spherical equation of the boundary cone is ¢ = 1. The restriction
y > 0says 0 < 6 < . The slightly tricky thing here is that this is a cone with a
planar base, not the “snow-cone” region described by 0 < p < 1, which has a rounded
top from a part of the sphere p = 1. In spherical coordinates, the plane z = 1 is
pcos¢ = 1, so p = sec ¢ on the outer boundary. The density is just 6 = p. So the

total mass is
w™ pw/4  psec
M:/ / / p>singdp do db
o Jo 0

:/ﬂ/ﬂ/4/S6C¢pgsin<f)dp dé do
- ““Zmd(b i
_ / / 4il()nsf(f) dp d  (u=du)

12 cos3(gb)
= E(Ni —1)

0

4



Comment: If you set this up in cylindrical coordinates instead, it would look like
this: The density is 6 = v/r2 + 22 and the limits of integration would be 0 < 6 < ,
0 < r <1 (the "shadow region”), and r < z < 1, since the top half of the cone
22 = 22 + y? is z = r. This forces the z-integral to come first, though, since the limit

of integration depends on r:

T 1 1
/ / / 12+ 22 rdzdrdo.
0 0 r

Note that you do not have the du for u = r? + 22, integrating with respect to z. This
is a (much) harder integral that would need to be done with a tangent substitution,
then parts on the resulting sec? form.

VIL
A) State Green’s Theorem.

Solution: If C is a simple closed curve, positively oriented, D is the interior region
enclosed by C, and F(z,y) = (Fi(z,y), Fa(x,y)) is a C* vector field on D, then

%F TdS—%Flde-i-ngy—/ @—@dfl
c oy

B) (10) Let F(z,y) = (x — y?, 2% + y). Verify that Green’s Theorem holds for the region
D ={(z,y) € R? : 2% + y*> < 9}.

Solution: Using the standard parametrization (x,y) = (3 cos(t), 3sin(¢)) of the bound-
ary circle of D,

7{ Fidzx + Fody = / 7r(3 cos(t) — 9sin?(t))(—3 sin(t))
0D

0
+ (9 cos?(t) + 3sin(t))(3 cos(t)) dt

27
27/ sin®(t) 4 cos®(t) dt
0

27

I
DO

7 ( ; - = Sln2(t) cos(t) + § sin(t) + % cos?(t) sin(t))

0

The double integral over D is

//D(Fm—(my dA://DQx-i-Qy dA.

This can be evaluated in a number of ways. Switching to polar coordinates, for
instance,

27 3
= / / 2r?(cos @ 4 sin ) dr df = 0
o Jo
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since both fo% cosf df =0 and fo% sinf df = 0.

VIIL. A function f(z,y) is said to be harmonic on an open set U in R? if it satisfies the
equation

fmr+fyy:0

at all points in U.

A) How does a nondegenerate critical point of a harmonic function fit into our classifica-
tion? Is it a local maximum, local minimum, or a saddle point? Explain how you can
tell from the second derivative test.

Solution: Every nondegenerate critical point of a harmonic function is a saddle point
because the Hessian matrix is

po=(g )= (5 %)

The determinant here is —(fz.)? — (fzy)? < 0.

B) If f is harmonic, what is true about the line integral of the vector field

F(.’E,y) = <_fy7 fx)

around any simple closed curve in U?

Solution: Let D be the region bounded by the simple closed curve. By Green’s
theorem, the integral is equal to

//D(fw—(—fy)y dA://Dfmm+fyy A—o.

Extra Credit (10)

Suppose you follow a flow line of the vector field —V f for f(x,y) in the zy-plane. As
you traverse the flow line in the increasing t-direction, is the corresponding path on the
graph z = f(x,y) going uphill or downhill? Explain. What does the vector field —V f look
like near a local maxmimum of f? near a local minimum of f7

Solution: You are always going downhill by the most direct route — recall V f(a,b)
gives the direction in which f is increasing the fastest. The negative gradient vector
field near a local maximum will have all arrows pointing away from the critical point
(flow lines will diverge from the maximum). Near a local minimum, the negative
gradient vector field will be pointing toward from the crirical point (flow lines will be
converging toward the minimum).

Have a peaceful and joyous holiday season!



