Mathematics 241 — Multivariable Calculus
Final Examination — December 11, 2007

I. In this problem, P = (1,0,1), @ = (-2,3,2), and R = (1,2,0).
A) (10) Find the equation of the plane containing the points P, Q, R in R3.

Solution: The displacement vector from P to @ is v = Q@ — P = (-3,3,1) and
the vector from P to Ris w = R— P = (0,2,—1). For the plane we can take
N = (-3,3,1) x (0,2,—-1) = (—5,—3,—6). Then the equation of the plane is 0 =
N -(z—-1,y—0,z—1)=-bz+5—3y —6z+6, or 52+ 3y + 6z = 11.

B) (10) At what point does the line containing P, @) meet the xy-plane?
Solution: The line is (1,0,1)+(—3,3,1)t = (1 —3t, 3¢, 1+¢). This meets the zy-plane
when z =1+4+1¢ =0, so t = —1. The point of intersection is (4, —3,0).

C) (5) If v is the displacement vector from P to (Q and w is the displacement vector from
P to R, at what angle do v, w meet?

Solution: The angle 6 satisfies cosf = ”v‘|’|’|‘|’zv” = So

5
V19V5®
6 =cos! (\/5/19> = 1.032 radians.

II.
A) (7.5) Let F : R2 , — R2  be F(u,v) = (z(u,v),y(u,v)) = (u? — v?,2uv) and let

U,V
g:R2, — Rbe g(z,y) = sin(z) cos(y). Find the derivative matrix D(go F) by direct
substitution and differentiation.
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Solution: The function (g o F)(u,v) = sin(u? — v?) cos(2uv), so computing partial

derivatives by the product rule

W = 2ucos(u? — v?) cos(2uv) — 2vusin(u? — v?) sin(2uv)
% = —2v cos(u? — v?) cos(2uv) — 2usin(u? — v?) sin(2uw)

and the derivative matrix is the 1 X 2 matrix with these entries.
B) (7.5) Compute D(g o F') for the functions in part A using the Chain Rule and show
you get the same result as in part A.

Solution: The Chain Rule says D(goF) = D(g)(F(u,v))D(F)(u,v) (matrix product).
So we compute D(g) = (cos(z)cos(y) —sin(x)sin(y)) and

2u —2v
D(F) = (21} 2u )
Hence the product matrix to be computed is

(cos(u? — v?) cos(2uv) —sin(u? — v2) sin(2uv) ) (3"; ;Z"’)



which gives a 1 x 2 matrix with first entry
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2u cos(u? — v?) cos(2uv) — 2vsin(u? — v?) sin(2uv)

and second entry
—2v cos(u? — v?) cos(2uv) — 2usin(u® — v?) sin(2uv)

as in the matrix D(g o F).

C) (10) Now let z = g(x,y) for a general function g — not specifically g(z,y) as above in
part A, and £ = u? — v2, y = 2uv as in the definition of F above. Show that

1 2 2\ __ 2 2
m ((ZU) + (Zv) ) = (Zm) + (Zy) .

Solution: Now we use the expanded form of the Chain Rule: We have 2, = 2,2, +2y Yy
and z, = 2z Ty + ZyYy SO
(Zu)2 + (Zv)z = (Z:vxu + Zyyu)2 + (Zmajv + Zyyv)2
= (2uzg + 2v2y)? + (202 + 2uz,)?
= 4u®(25)? + 8uvzy 2y + 407 (2y)* + 4v%(2,)? — Suvzy 2, + 4u*(z,)?

= 4(u® +0%)((2:) + (2)?)
Dividing by 4(u? + v?) yields the desired equation.

II1. All parts of this problem refer to f(z,y) = (z +1)? + 3.
A) (5) Sketch the level curves of f(x,y) for the values ¢ = 1,4,9.

Solution: The level curves of f are circles with center at (—1,0) the radii are r = 1,2, 3
respectively.

B) (10) At the point (1,2), in which direction is f increasing the fastest? Express your
answer as a unit direction vector.

Solution: This is in the direction of the gradient vector V f(1,2). The gradient vector
is Vf(z,y) = (2(x + 1),2y) at a general point. So Vf(1,2) = (4,4). The unit vector

in this direction is ﬁ(ll, 4) = (vV2/2,V/2/2).

C) (15) Find the points on the curve g(z,y) = % +y? = 1 at which f(z,y) takes its
largest and smallest values. What is true about the vectors V f and Vg at your points?

Solution: Using the Lagrange multiplier method, we must solve

2(x +1) = Ax/2
2y =2y



From the second equation, y = 0 or A = 1. If y = 0, the constraint equation gives
x = +2, so we obtain two points (+2,0). If A = 1, then from the first equation,
2(x +1) = /2, so x = —4/3. Then from the constraint equation we get y = +v/5/3.
To determine which of these give maximum and minimum values, we substitute into

f(z,y):
f(2,0) =9 (maximum)

f(=2,0)=1
f(—4/3,+V5/3) = 1/9 + 5/9 = 2/3 (minimum)
The points we found here are the points where the level curve of f passing through
that point and the constraint curve are tangent.
IV. Let f(z,y) = ze=22" Y,

A) (10) Find the equation of the tangent plane to the graph z = f(z,y) at the point
(1,1,e73).

Solution: We must compute the partial derivatives to start:

fo=(1—dz?)e 2 ¥

fy= —2a:ye_2“”2_y2 .

At (z,y) = (1,1), f2(1,1) = —=3e73, and f,(1,1) = —2e~3, so the tangent plane is
z=e 2 -3¢ (x—1) -2 3(y —1).

B) (10) Find all the critical points of f(z,y).

Solution: The critical points are the solutions of f, = 0 and f, = 0. Using the
formulas for f;, f, from part A, we see that f; =0 when = £1/2 and f, = 0 when
xz =0 or y =0 (Note: the exponential factor is never zero.) Hence the simultaneous
solutions are the two points (£1/2,0).

C) (20) Use the second derivative test (Hessian criterion) to determine the type of each
critical point you found in part B.

Solution: Now we need the second-order partial derivatives as well:

foz = (162° — 123:)6_2””2_y2
foy = (1 — 42%)(=2y)e 2" ¥’
Foy = —22(1 — 2y%)e 27" V"

So at (1/2,0) the Hessian matrix is

D(na/z0 = (' v )
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The determinant is 4e~* > 0 and the upper left entry is < 0 so this is a local mazimum.
At (—1/2,0) the Hessian matrix is

iz = (107 8)

The determinant is 4e~! > 0 and the upper left entry is > 0 so this is a local minimum.

V. A region R in R? is the set of points satisfying 2 +y2 > 1,y >z, 2 > 0, and y < 4.
A) (5) Sketch the region R.

Solution: This is the region outside the unit circle with center (0,0), to the right of
the y-axis, below the horizontal line y = 4, and above the line y = z.

B) (10) Set up the limits of integration of iterated integral(s) to compute [ [, f(z,y) dA
integrating with respect to z first, then y.

Solution: The circle intersects the line y = = at (v/2/2,1/2/2). From there to the
top of the circle at y = 1, the left boundary of the region is part of the circle. For
y > 1, though, the left boundary is part of the y-axis so we have to split the integral

at y = 1:
1 y 4 ry
dz d dr dy.
/ﬁﬂ/ﬁf(:v,y) z y+/1 /0 f(z,y) dz dy

C) (10) Now reverse the order of the variables and set up iterated integral(s) to compute
the same integral, but integrating with respect to y first, then z.

Solution: We also need to split the integral this way since the bottom boundary
changes at £ = v/2/2. The region extends all the way to = 4 on the right, where
the line y = 4 intersects y = z:

V2/2 4 4 4
/ / f(z,y) dy dz +/ / f(z,y) dy dz.
0 V1i—z? V2/2Jg

VI. (20) The metal making up a solid slug having the shape of the region in R3 with
2 +y? < 4 and —1 < z < 1 has density 6(z,y,2) = 5 + x at all points. Determine the
coordinates of its center of mass.

Solution: We will set up the triple integrals to compute the coordinates of the center
of mass using cylindrical coordinates, since the slug is just a cylinder with axis along
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the z-axis. The total mass is

2r 2 pl
M = / / / (54 rcos)rdz dr df
o Jo J-1

27 2

:2/ / 5r + r2cos@ dr df
0 0
27 5 2

1
:2/ “r?2 4+ —r3cosh| db
0 3

2 0

27 8
:2/ 10 4+ — cos 8 do
0 3

8 27
= 200 + 3 sin 0

0
= 40m.

Since the density does not depend on y or z, by the symmetry of the cylinder, it can
be seen that ¥ = Z = 0. To compute the x-coordinate,

1

"7 dor

o2 2 gl
/ / rcosf(5+ rcosf)r dz dr db
o Jo J-1

1 27 2
—-2/ / 512 cos @ + 3 cos® 6 dr df
40m o Jo

2

do

0

1 [ 1
= “r3cosl+ -1

T 20m ), 3 4
1 27

4cos?0

0
= — cosf + 4cos® 0 db
207r 0 3

1 40 .
= 20—7{_ (? sin @ + 20 + COS(29)>

1
= — 4 1-0-0-1
207r(0+ T+ 0-0-1)

1

F
The values of i and Z can also be computed directly as above, replacing the x = r cos
by y = rsinf and z respectively.

27

0

VIL
A) (10) State Green’s Theorem.

Solution: If D is a region in R? bounded by a finite collection of simple closed curves,
dD is the positively-oriented boundary of D, and F(z,y) = (M(z,y), N(z,y)) is a C*
vector field on D, then

de—}—Ndy:// N, — M, dA.
D D
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B) (10) Let F(z,y) = (z — y%, 22 + y). Verify that Green’s Theorem holds for the region
D ={(z,y) e R? : 2* + y% < 9}

Solution: Using the standard parametrization (z,y) = (3 cos(t), 3 sin(t)) of the bound-
ary circle of D,

Mdx + Ndy = /02 (
+ (9 cos?(t) + 3sin(t))(3 cos(t)) dt

- 3 cos(t) — 9sin?(t))(—3sin(t))

2w
= 27/ sin®(t) + cos®(t) dt
0

=27 ( g - = s1n2(t) cos(t) + gsin(t) + %0032(15) sin(t))

0

The double integral over D is

// Nm—MydA:// 2z + 2y dA.
D D

This can be evaluated in a number of ways. Switching to polar coordinates, for

instance,
27 3
:/ / 2r%(cos 0 +sin ) dr df = 0
o Jo

since both f027r cosf df = 0 and f027r sinf df = 0.

C) (5) We can think of a vector field on R? as a vector field on R3 by making the last
component equal to zero at all points. Compute curl(F) for F = (M(z,y), N(z,y),0)
and relate your result to the statement of Green’s Theorem.

Solution: We have
curl(F) =V x (M(z,y), N(z,y),0)

Since M, N do not depend on z and because of the zero in the last component,
curl(F) = (0,0, Ny (z,y) — My(z,y))

The integrand in the double integral in Green’s theorem is just the last component
here.

Comment: In fact, Green’s theorem is a special case of a more general result called
Stokes’ theorem in which the plane region is replaced by a surface S in R3. Stokes’
theorem then asserts the equality of the line integral of F over the boundary of §
and the surface integral of curl(F) over S. The surface integral involves integrating
curl(F) - N. where N is a normal vector to the surface. The normal vector for D in
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R? is just k = (0,0,1) at each point, and curl(F) - k is exactly the integrand of the
double integral in Green’s theorem.

VIIL A function f(z,y) is said to be harmonic on an open set U in R? if it satisfies the
equation
fa:m + fyy =0

at all points in U.

A) (5) How does a nondegenerate critical point of a harmonic function fit into our classi-
fication? Is it a local maximum, local minimum, or a saddle point? Explain how you
can tell from the Hessian criterion.

Solution: Every nondegenerate critical point of a harmonic function is a saddle point
because the Hessian matrix is

The determinant here is —(fzz)? — (fay)? < 0.

B) (5) If f is harmonic, what is true about the line integral of the vector field

F(z,y) = (=fy, fo)

around any simple closed curve in U?

Solution: Let D be the region bounded by the simple closed curve. By Green’s
theorem, the integral is equal to

//D(fz)m—<—fy)y dA://Dmeyy A — 0.

Extra Credit (20)

Suppose you follow a flow line of the vector field V f for f(z,y) in the zy-plane. As
you traverse the flow line in the increasing t-direction, is the corresponding path on the
graph z = f(z,y) going uphill or downhill? Explain. What does the vector field V f look
like near a local maxmimum of f7 near a local minimum of f7

Solution: You are always going uphill by the most direct route — recall V f(a, b) gives
the direction in which f is increasing the fastest. The gradient vector field near a
local maximum will have all arrows pointing in toward the critical point (flow lines
will converge toward the maximum). Near a local minimum, the gradient vector field
will be pointing away from the crirical point (flow lines will be diverging away from
the minimum).

Have a peaceful and joyous holiday season!
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