I. In this problem, P = (1, 0, 1), Q = (-2, 3, 2), and R = (1, 2, 0).

A) (10) Find the equation of the plane containing the points P, Q, R in \mathbb{R}^3 .

Solution: The displacement vector from P to Q is $\mathbf{v} = Q - P = (-3, 3, 1)$ and the vector from P to R is $\mathbf{w} = R - P = (0, 2, -1)$. For the plane we can take $N = (-3, 3, 1) \times (0, 2, -1) = (-5, -3, -6)$. Then the equation of the plane is $0 = N \cdot (x - 1, y - 0, z - 1) = -5x + 5 - 3y - 6z + 6$, or 5x + 3y + 6z = 11.

B) (10) At what point does the line containing P, Q meet the xy-plane?

Solution: The line is (1,0,1)+(-3,3,1)t=(1-3t,3t,1+t). This meets the xy-plane when z=1+t=0, so t=-1. The point of intersection is (4,-3,0).

C) (5) If \mathbf{v} is the displacement vector from P to Q and \mathbf{w} is the displacement vector from P to R, at what angle do \mathbf{v} , \mathbf{w} meet?

Solution: The angle θ satisfies $\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{5}{\sqrt{19}\sqrt{5}}$. So

$$\theta = \cos^{-1}\left(\sqrt{5/19}\right) \doteq 1.032 \text{ radians.}$$

II.

A) (7.5) Let $F: \mathbf{R}_{u,v}^2 \to \mathbf{R}_{x,y}^2$ be $F(u,v) = (x(u,v),y(u,v)) = (u^2 - v^2, 2uv)$ and let $g: \mathbf{R}_{x,y}^2 \to \mathbf{R}$ be $g(x,y) = \sin(x)\cos(y)$. Find the derivative matrix $D(g \circ F)$ by direct substitution and differentiation.

Solution: The function $(g \circ F)(u, v) = \sin(u^2 - v^2)\cos(2uv)$, so computing partial derivatives by the product rule

$$\frac{\partial(g\circ F)}{\partial u} = 2u\cos(u^2 - v^2)\cos(2uv) - 2v\sin(u^2 - v^2)\sin(2uv)$$
$$\frac{\partial(g\circ F)}{\partial u} = -2v\cos(u^2 - v^2)\cos(2uv) - 2u\sin(u^2 - v^2)\sin(2uv)$$

and the derivative matrix is the 1×2 matrix with these entries.

B) (7.5) Compute $D(g \circ F)$ for the functions in part A using the Chain Rule and show you get the same result as in part A.

Solution: The Chain Rule says $D(g \circ F) = D(g)(F(u, v))D(F)(u, v)$ (matrix product). So we compute $D(g) = (\cos(x)\cos(y) - \sin(x)\sin(y))$ and

$$D(F) = \begin{pmatrix} 2u & -2v \\ 2v & 2u \end{pmatrix}.$$

Hence the product matrix to be computed is

$$(\cos(u^2-v^2)\cos(2uv) - \sin(u^2-v^2)\sin(2uv))\begin{pmatrix} 2u & -2v \\ 2v & 2u \end{pmatrix}$$

which gives a 1×2 matrix with first entry

$$2u\cos(u^2-v^2)\cos(2uv) - 2v\sin(u^2-v^2)\sin(2uv)$$

and second entry

$$-2v\cos(u^2 - v^2)\cos(2uv) - 2u\sin(u^2 - v^2)\sin(2uv)$$

as in the matrix $D(g \circ F)$.

C) (10) Now let z = g(x, y) for a general function g – not specifically g(x, y) as above in part A, and $x = u^2 - v^2$, y = 2uv as in the definition of F above. Show that

$$\frac{1}{4(u^2+v^2)}\left((z_u)^2+(z_v)^2\right)=(z_x)^2+(z_y)^2.$$

Solution: Now we use the expanded form of the Chain Rule: We have $z_u = z_x x_u + z_y y_u$ and $z_v = z_x x_v + z_y y_v$ so

$$(z_u)^2 + (z_v)^2 = (z_x x_u + z_y y_u)^2 + (z_x x_v + z_y y_v)^2$$

$$= (2uz_x + 2vz_y)^2 + (-2vz_x + 2uz_y)^2$$

$$= 4u^2(z_x)^2 + 8uvz_x z_y + 4v^2(z_y)^2 + 4v^2(z_x)^2 - 8uvz_x z_y + 4u^2(z_y)^2$$

$$= 4(u^2 + v^2)((z_x)^2 + (z_y)^2)$$

Dividing by $4(u^2 + v^2)$ yields the desired equation.

- III. All parts of this problem refer to $f(x,y) = (x+1)^2 + y^2$.
- A) (5) Sketch the level curves of f(x,y) for the values c=1,4,9.

Solution: The level curves of f are circles with center at (-1,0) the radii are r=1,2,3 respectively.

B) (10) At the point (1,2), in which direction is f increasing the fastest? Express your answer as a unit direction vector.

Solution: This is in the direction of the gradient vector $\nabla f(1,2)$. The gradient vector is $\nabla f(x,y) = (2(x+1),2y)$ at a general point. So $\nabla f(1,2) = (4,4)$. The unit vector in this direction is $\frac{1}{4\sqrt{2}}(4,4) = (\sqrt{2}/2,\sqrt{2}/2)$.

C) (15) Find the points on the curve $g(x,y) = \frac{x^2}{4} + y^2 = 1$ at which f(x,y) takes its largest and smallest values. What is true about the vectors ∇f and ∇g at your points?

Solution: Using the Lagrange multiplier method, we must solve

$$2(x+1) = \lambda x/2$$
$$2y = 2\lambda y$$
$$\frac{x^2}{4} + y^2 = 1$$

From the second equation, y=0 or $\lambda=1$. If y=0, the constraint equation gives $x=\pm 2$, so we obtain two points $(\pm 2,0)$. If $\lambda=1$, then from the first equation, 2(x+1)=x/2, so x=-4/3. Then from the constraint equation we get $y=\pm \sqrt{5}/3$. To determine which of these give maximum and minimum values, we substitute into f(x,y):

$$f(2,0) = 9 \text{ (maximum)}$$

 $f(-2,0) = 1$
 $f(-4/3, \pm \sqrt{5}/3) = 1/9 + 5/9 = 2/3 \text{ (minimum)}$

The points we found here are the points where the level curve of f passing through that point and the constraint curve are tangent.

IV. Let $f(x, y) = xe^{-2x^2 - y^2}$.

A) (10) Find the equation of the tangent plane to the graph z = f(x, y) at the point $(1, 1, e^{-3})$.

Solution: We must compute the partial derivatives to start:

$$f_x = (1 - 4x^2)e^{-2x^2 - y^2}$$
$$f_y = -2xye^{-2x^2 - y^2}.$$

At (x,y) = (1,1), $f_x(1,1) = -3e^{-3}$, and $f_y(1,1) = -2e^{-3}$, so the tangent plane is $z = e^{-3} - 3e^{-3}(x-1) - 2e^{-3}(y-1)$.

B) (10) Find all the critical points of f(x, y).

Solution: The critical points are the solutions of $f_x = 0$ and $f_y = 0$. Using the formulas for f_x , f_y from part A, we see that $f_x = 0$ when $x = \pm 1/2$ and $f_y = 0$ when x = 0 or y = 0 (Note: the exponential factor is *never zero*.) Hence the simultaneous solutions are the two points $(\pm 1/2, 0)$.

C) (20) Use the second derivative test (Hessian criterion) to determine the type of each critical point you found in part B.

Solution: Now we need the second-order partial derivatives as well:

$$f_{xx} = (16x^3 - 12x)e^{-2x^2 - y^2}$$

$$f_{xy} = (1 - 4x^2)(-2y)e^{-2x^2 - y^2}$$

$$f_{yy} = -2x(1 - 2y^2)e^{-2x^2 - y^2}$$

So at (1/2,0) the Hessian matrix is

$$D^{2}(f)(1/2,0) = \begin{pmatrix} -4e^{-1/2} & 0\\ 0 & -e^{-1/2} \end{pmatrix}$$

The determinant is $4e^{-1} > 0$ and the upper left entry is < 0 so this is a *local maximum*. At (-1/2, 0) the Hessian matrix is

$$D^{2}(f)(-1/2,0) = \begin{pmatrix} 4e^{-1/2} & 0\\ 0 & e^{-1/2} \end{pmatrix}$$

The determinant is $4e^{-1} > 0$ and the upper left entry is > 0 so this is a local minimum.

V. A region R in \mathbb{R}^2 is the set of points satisfying $x^2 + y^2 \ge 1$, $y \ge x$, $x \ge 0$, and $y \le 4$.

A) (5) Sketch the region R.

Solution: This is the region outside the unit circle with center (0,0), to the right of the y-axis, below the horizontal line y=4, and above the line y=x.

B) (10) Set up the limits of integration of iterated integral(s) to compute $\int \int_R f(x,y) dA$ integrating with respect to x first, then y.

Solution: The circle intersects the line y = x at $(\sqrt{2}/2, \sqrt{2}/2)$. From there to the top of the circle at y = 1, the left boundary of the region is part of the circle. For y > 1, though, the left boundary is part of the y-axis so we have to split the integral at y = 1:

$$\int_{\sqrt{2}/2}^{1} \int_{\sqrt{1-y^2}}^{y} f(x,y) \ dx \ dy + \int_{1}^{4} \int_{0}^{y} f(x,y) \ dx \ dy.$$

C) (10) Now reverse the order of the variables and set up iterated integral(s) to compute the same integral, but integrating with respect to y first, then x.

Solution: We also need to split the integral this way since the bottom boundary changes at $x = \sqrt{2}/2$. The region extends all the way to x = 4 on the right, where the line y = 4 intersects y = x:

$$\int_0^{\sqrt{2}/2} \int_{\sqrt{1-x^2}}^4 f(x,y) \ dy \ dx + \int_{\sqrt{2}/2}^4 \int_x^4 f(x,y) \ dy \ dx.$$

VI. (20) The metal making up a solid slug having the shape of the region in \mathbf{R}^3 with $x^2 + y^2 \le 4$ and $-1 \le z \le 1$ has density $\delta(x, y, z) = 5 + x$ at all points. Determine the coordinates of its center of mass.

Solution: We will set up the triple integrals to compute the coordinates of the center of mass using *cylindrical* coordinates, since the slug is just a cylinder with axis along

the z-axis. The total mass is

$$M = \int_0^{2\pi} \int_0^2 \int_{-1}^1 (5 + r \cos \theta) r dz \, dr \, d\theta$$

$$= 2 \int_0^{2\pi} \int_0^2 5r + r^2 \cos \theta \, dr \, d\theta$$

$$= 2 \int_0^{2\pi} \frac{5}{2} r^2 + \frac{1}{3} r^3 \cos \theta \Big|_0^2 \, d\theta$$

$$= 2 \int_0^{2\pi} 10 + \frac{8}{3} \cos \theta \, d\theta$$

$$= 20\theta + \frac{8}{2} \sin \theta \Big|_0^{2\pi}$$

$$= 40\pi.$$

Since the density does not depend on y or z, by the symmetry of the cylinder, it can be seen that $\overline{y} = \overline{z} = 0$. To compute the x-coordinate,

$$\overline{x} = \frac{1}{40\pi} \int_0^{2\pi} \int_0^2 \int_{-1}^1 r \cos\theta (5 + r \cos\theta) r \, dz \, dr \, d\theta$$

$$= \frac{1}{40\pi} \cdot 2 \int_0^{2\pi} \int_0^2 5r^2 \cos\theta + r^3 \cos^2\theta \, dr \, d\theta$$

$$= \frac{1}{20\pi} \int_0^{2\pi} \frac{5}{3} r^3 \cos\theta + \frac{1}{4} r^4 \cos^2\theta \Big|_0^2 \, d\theta$$

$$= \frac{1}{20\pi} \int_0^{2\pi} \frac{40}{3} \cos\theta + 4 \cos^2\theta \, d\theta$$

$$= \frac{1}{20\pi} \left(\frac{40}{3} \sin\theta + 2\theta + \cos(2\theta) \right) \Big|_0^{2\pi}$$

$$= \frac{1}{20\pi} \left(0 + 4\pi + 1 - 0 - 0 - 1 \right)$$

$$= \frac{1}{5}.$$

The values of \overline{y} and \overline{z} can also be computed directly as above, replacing the $x = r \cos \theta$ by $y = r \sin \theta$ and z respectively.

VII.

A) (10) State Green's Theorem.

Solution: If D is a region in \mathbf{R}^2 bounded by a finite collection of simple closed curves, ∂D is the positively-oriented boundary of D, and $\mathbf{F}(x,y) = (M(x,y), N(x,y))$ is a C^1 vector field on D, then

$$\oint_{\partial D} M dx + N dy = \iint_{D} N_x - M_y \ dA.$$

B) (10) Let $\mathbf{F}(x,y) = (x-y^2,x^2+y)$. Verify that Green's Theorem holds for the region $D = \{(x,y) \in \mathbf{R}^2 : x^2+y^2 \leq 9\}$.

Solution: Using the standard parametrization $(x, y) = (3\cos(t), 3\sin(t))$ of the boundary circle of D,

$$\oint_{\partial D} M dx + N dy = \int_{0}^{2\pi} (3\cos(t) - 9\sin^{2}(t))(-3\sin(t))
+ (9\cos^{2}(t) + 3\sin(t))(3\cos(t)) dt
= 27 \int_{0}^{2\pi} \sin^{3}(t) + \cos^{3}(t) dt
= 27 \left(-\frac{2}{3}\cos(t) - \frac{1}{3}\sin^{2}(t)\cos(t) + \frac{2}{3}\sin(t) + \frac{1}{3}\cos^{2}(t)\sin(t) \right) \Big|_{0}^{2\pi}
= 0.$$

The double integral over D is

$$\iint_D N_x - M_y \ dA = \iint_D 2x + 2y \ dA.$$

This can be evaluated in a number of ways. Switching to polar coordinates, for instance,

$$= \int_0^{2\pi} \int_0^3 2r^2 (\cos \theta + \sin \theta) \ dr \ d\theta = 0$$

since both $\int_0^{2\pi} \cos \theta \ d\theta = 0$ and $\int_0^{2\pi} \sin \theta \ d\theta = 0$.

C) (5) We can think of a vector field on \mathbf{R}^2 as a vector field on \mathbf{R}^3 by making the last component equal to zero at all points. Compute $\operatorname{curl}(\mathbf{F})$ for $\mathbf{F} = (M(x,y), N(x,y), 0)$ and relate your result to the statement of Green's Theorem.

Solution: We have

$$\operatorname{curl}(\mathbf{F}) = \nabla \times (M(x,y), N(x,y), 0)$$

Since M, N do not depend on z and because of the zero in the last component,

$$\operatorname{curl}(\mathbf{F}) = (0, 0, N_x(x, y) - M_y(x, y))$$

The integrand in the double integral in Green's theorem is just the last component here.

Comment: In fact, Green's theorem is a special case of a more general result called Stokes' theorem in which the plane region is replaced by a surface S in \mathbb{R}^3 . Stokes' theorem then asserts the equality of the line integral of \mathbb{F} over the boundary of S and the surface integral of $\operatorname{curl}(\mathbb{F})$ over S. The surface integral involves integrating $\operatorname{curl}(\mathbb{F}) \cdot \mathbb{N}$, where \mathbb{N} is a normal vector to the surface. The normal vector for D in

 \mathbf{R}^2 is just $\mathbf{k} = (0, 0, 1)$ at each point, and $\operatorname{curl}(\mathbf{F}) \cdot \mathbf{k}$ is exactly the integrand of the double integral in Green's theorem.

VIII. A function f(x,y) is said to be *harmonic* on an open set U in \mathbf{R}^2 if it satisfies the equation

$$f_{xx} + f_{yy} = 0$$

at all points in U.

A) (5) How does a nondegenerate critical point of a harmonic function fit into our classification? Is it a local maximum, local minimum, or a saddle point? Explain how you can tell from the Hessian criterion.

Solution: Every nondegenerate critical point of a harmonic function is a *saddle point* because the Hessian matrix is

$$D^{2}(f) = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix} = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & -f_{xx} \end{pmatrix}.$$

The determinant here is $-(f_{xx})^2 - (f_{xy})^2 < 0$.

B) (5) If f is harmonic, what is true about the line integral of the vector field

$$\mathbf{F}(x,y) = (-f_y, f_x)$$

around any simple closed curve in U?

Solution: Let D be the region bounded by the simple closed curve. By Green's theorem, the integral is equal to

$$\iint_{D} (f_x)_x - (-f_y)_y \ dA = \iint_{D} f_{xx} + f_{yy} \ dA = 0.$$

Extra Credit (20)

Suppose you follow a flow line of the vector field ∇f for f(x,y) in the xy-plane. As you traverse the flow line in the increasing t-direction, is the corresponding path on the graph z = f(x,y) going uphill or downhill? Explain. What does the vector field ∇f look like near a local maxmimum of f? near a local minimum of f?

Solution: You are always going *uphill* by the most direct route – recall $\nabla f(a, b)$ gives the direction in which f is increasing the fastest. The gradient vector field near a local maximum will have all arrows pointing in toward the critical point (flow lines will converge toward the maximum). Near a local minimum, the gradient vector field will be pointing away from the critical point (flow lines will be diverging away from the minimum).

Have a peaceful and joyous holiday season!