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ABSTRACT

Fitting a line to a bivariate dataset can be a deceptively complex problem, and there has been much debate on
this issue in the literature. In this review, we describe for the practitioner the essential features of line-fitting
methods for estimating the relationship between two variables : what methods are commonly used, which method
should be used when, and how to make inferences from these lines to answer common research questions.

A particularly important point for line-fitting in allometry is that usually, two sources of error are present
(which we call measurement and equation error), and these have quite different implications for choice of line-
fitting method. As a consequence, the approach in this review and the methods presented have subtle but
important differences from previous reviews in the biology literature.

Linear regression, major axis and standardised major axis are alternative methods that can be appropriate
when there is no measurement error. When there is measurement error, this often needs to be estimated and used
to adjust the variance terms in formulae for line-fitting. We also review line-fitting methods for phylogenetic
analyses.

Methods of inference are described for the line-fitting techniques discussed in this paper. The types of inference
considered here are testing if the slope or elevation equals a given value, constructing confidence intervals for the
slope or elevation, comparing several slopes or elevations, and testing for shift along the axis amongst several
groups. In some cases several methods have been proposed in the literature. These are discussed and compared.
In other cases there is little or no previous guidance available in the literature.

Simulations were conducted to check whether the methods of inference proposed have the intended coverage
probability or Type I error. We identified the methods of inference that perform well and recommend the
techniques that should be adopted in future work.

Key words : model II regression, errors-in-variables models, standardised major axis, functional and structural
relationships, measurement error, method-of-moments regression, test for common slopes, analysis of covariance.
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I. INTRODUCTION

Fitting a line to a bivariate cloud of data would seem a
relatively simple and fundamental procedure in data analy-
sis. However, there has been lively debate in the literature
concerning which method is appropriate in what situation
(Ricker, 1973, 1982; Jolicoeur, 1975, 1990; Sprent &
Dolby, 1980; Sokal & Rohlf, 1995; Carroll & Ruppert,
1996), and some of the issues discussed have never com-
pletely been resolved. Authors have offered distinctly dif-
ferent reasons for using one method instead of another
(Sokal & Rohlf, 1995; Carroll & Ruppert, 1996, for ex-
ample), and have advocated different methods (McArdle,
1988; Isobe et al., 1990; Jolicoeur, 1990).

In this paper, line-fitting is discussed specifically in the
context of allometry, the study of size and its biological

consequences (Reiss, 1989; Niklas, 2004). Allometry is
a discipline in which alternatives to linear regression
are routinely required, because lines are usually fitted to
estimate how one variable scales against another, rather
than to predict the value of one variable from another.
Other disciplines in which such methods are commonly
required are astronomy, physics and chemistry (Isobe et al.,
1990).

Describing the relationship between two variables typi-
cally involves making inferences in some more general
context than was directly studied. Given measurements of
brain and body mass for a sample of mammals, we would
like to interpret results as being meaningful for allmammals.
Statistical procedures that assist in generalising – making
claims about a population, based on a sample – are known
as methods of inference. In allometry, we would like to make
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inferences about the slope and sometimes the elevation of
lines that are fitted to data.

This paper reviews the methods of line-fitting commonly
used in allometry, their uses, and how to make inferences
from lines fitted to a dataset. We identify fundamental points
with a logical basis or a wide consensus in the literature,
common misinterpretations, points of controversy and ways
forward from these.

In describing line-fitting methods and their uses (Sections
III and IV), we emphasise the distinction between two types
of error, equation error and measurement error. This dis-
tinction leads us to a different viewpoint than that taken by
most reviewers of this subject in the past, and it leads us to
discuss a method of line-fitting that has not been used before
(to our knowledge) for allometric problems when both forms
of error are present and non-ignorable.

In reviewing methods of inference for common methods
of line-fitting (Sections V and VI), we consider procedures
for the major axis (MA), standardised major axis (SMA),
and modifications of these methods for instances where the
line is constrained to pass through the origin or when
measurement error is accounted for in estimation. Methods
of inference for linear regression are not considered here,
being well-known (Draper & Smith, 1998, Chapter 14) and
available in standard statistics packages. We focus on the
techniques appropriate for : (a) testing if slope and elevation
equal a particular value, and estimating confidence intervals
for slope and elevation (Fig. 1A) ; (b) testing if several lines
have a common slope (Fig. 1B) ; (c) testing if several lines
have a common elevation (Fig. 1C) ; (d ) testing for no shift
along lines of common slope (Fig. 1D)

Fig. 1 summarises schematically the hypothesis of interest
in each of these situations, for a particular dataset that is
explained in more detail in Section II.1.

We have found methods for comparing several indepen-
dent lines to be particularly useful, and so devote con-
siderable time in this paper to this topic. Such methods
are useful for exploring how the relationship between two
variables changes across functional groups, populations,
environments, etc.

Some of the tests for comparing several bivariate allo-
metric relationships (Fig. 1B,C) are analogous to analysis
of covariance, but for the MA and SMA lines rather than
for linear regression. Analysis of covariance is of limited
usefulness in allometry, because linear regression is often
inappropriate. Despite this, analysis of covariance has often
been used in previous allometric work, because of an ap-
parent unavailability of alternative methods of inference
(for example, by Wilkinson & Douglas, 1998). However,
there is no longer a need to resort to analysis of covariance
in situations where it is considered inappropriate, given the
methods described in this paper.

This review contains several novel contributions to the
literature on line-fitting in allometry : (i ) Several points are
made regarding usage and interpretation of methods that
are new to the biology literature, (ii ) We discuss a method of
line-fitting that has not been used before (to our knowledge)
for allometric problems when both equation and measure-
ment error are present and non-ignorable. (iii ) A geometric
interpretation of methods of inference is presented, where

possible, (iv) Some useful developments for comparing
several lines are reviewed that are not well known in the
biology literature (Flury, 1984; Warton & Weber, 2002).
(v) New methods are suggested in this paper, when no
guidance is currently available, (vi ) Simulations have been
conducted (Appendix E) to explore the properties of the
methods discussed in this paper. The simulation results lead
us to some new conclusions.

Terminology and derivations of line-fitting methods are
explained in Appendices A and B, guidelines on measure-
ment error calculation are given in Appendix C, calculation
formulae for the methods of inference considered here are
provided in Appendix D, simulations assessing the efficacy
of these methods are presented in Appendix E, and algor-
ithms for resampling are given in Appendix F.

II. SOME ALLOMETRIC EXAMPLES

This section briefly introduces allometry and describes ex-
amples of where allometry is used.

In allometry, typically there are two variables y and
x which are believed to be related by the equation

y=cx b: (1)

This is often referred to as the ‘allometric relation’ (Harvey
& Pagel, 1991) or ‘allometric equation’ (Reiss, 1989). The x
and y variables are log-transformed, so that the above
equation can be reexpressed as

Y= log (c)+bX (2)

Y=a+bX (3)

where we have made the substitutions Y=log(y), X=log(x),
and a=log(c). There is a linear relationship between Y and
X. The log transformation is used for two different reasons.
Firstly, it allows the relationship between the two size vari-
ables to be expressed as a linear relationship, which sim-
plifies estimation. Secondly, it puts the size variables on a
multiplicative or logarithmic scale. This is a sensible scale for
interpreting most size variables, since growth is a multipli-
cative process.

It should always be checked whether or not log-trans-
formed size variables are linearly related, because it may not
be the case that two size variables are related by the allo-
metric equation. Experience shows, however, that it is
commonly a good approximation to the relationship be-
tween two size variables.

In some allometric work, it may not be considered desir-
able to log-transform variables. In the remainder of this ar-
ticle, we refer to the fitting of a linear relationship between Y
and X, where these variables may or may not have been
transformed. So, for example, Y might represent log(seed
mass), log(brain mass) or height of children.

Throughout this paper we will refer to three examples,
each of which is useful for highlighting different aspects of
line-fitting for allometry.

Fig. 2 is a plot of brain mass against body mass for 62
mammal species, for data from Allison & Cicchetti (1976).
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Fig. 1. An illustration of the four different types of tests considered in this paper : (A) testing if the slope equals a particular value (1 in
this case, broken line), (B) testing if slopes are different, (C) testing if elevations are different, (D) testing for shift along the axis. Data
fromWright & Westoby (2002) : leaf longevity (in years, log scale) versus leaf mass per area (kg mx2, log scale), where each datapoint
is for a different plant species. Species come in four natural groups, corresponding to higher versus lower rainfall and higher versus
lower soil nutrient levels. Different pairs of groups have been plotted in (B–D), representing different rainfall or soil nutrient
contrasts.
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On the logarithmic scale, these two variables appear to be
linearly related, and the slope of the relationship has been
hypothesised to be 2

3 or
3
4, based on arguments reviewed by

Schoenemann (2004).
Fig. 3 is a plot of plant height versus basal diameter for

Rhus trichocarpa saplings, from Osada (2005). Note that
whereas the points on the plot in Fig. 2 were species, the
points in this case represent individual saplings.

Fig. 1 represents a third example dataset that will be dis-
cussed in more detail below.

(1 ) Example with several independent lines

Fig. 1 refers to an example from our own experience (Wright
& Westoby, 2002) which is particularly useful for discussing
methods of inference about allometric lines. All four of the
methods of inference described in this paper were of interest
for this dataset.

The data in Fig. 1 are leaf longevity data (in years) against
leaf mass per area (kg mx2), for plant species sampled at
four different sites (Wright & Westoby, 2002). Leaf mass per
area (LMA) can be interpreted as the plant’s dry mass in-
vestment in the leaf, on a per unit area basis. Leaves with
higher LMA are more expensive, from the plant’s point-
of-view, but they tend to live longer. A consistent positive
relationship between these two variables has been docu-
mented in environments all over the globe (Wright et al.,
2004).

One question of interest is whether leaf longevity is
directly proportional to leaf mass per area (Question a,
depicted in Fig. 1A). If this is the case, then a doubling of
mass investment is matched by a doubling in leaf lifetime.
In terms of light capture, this would mean that there is
no observed lifetime advantage to having more mass in
leaves of a given area, because the potential lifetime light
capture (leaf arearlongevity) is directly proportional to
the mass initially invested in the leaf. If leaf longevity

and LMA are directly proportional to each other, then the
log-transformed variables will be linearly related with a
slope of 1. Hence we wish to test (for any particular site)
whether or not the slope is 1 (Fig. 1A, the broken line has
slope 1).

Another question of interest is whether there are differ-
ences in the nature of the relationship between leaf longevity
and LMA, for different plant communities. In particular : (i )
Does the slope of the relationship between leaf longevity and
LMA change across different sites (Question b) ? If so, then
across communities, this suggests different leaf longevity
gains from additional mass investment in leaves. This is
depicted in Fig. 1B, for two high-rainfall sites that differ in
soil nutrient levels, (ii ) Is there a shift in elevation across
different sites (Question c) ? If so, then across communities,
leaf longevity differs for plants with similar LMA. This sug-
gests that leaves in different communities have different
opportunities for total lifetime light capture, for a given mass
investment in the leaf. Fig. 1C shows two low-nutrient sites
with different rainfall, which may differ in elevation (but
have a common slope). (iii ) Is there a shift along a common
axis across different sites (Question d ) ? If so, then LMA and
leaf longevity tend to vary across sites, but the relationship
between the two variables remains the same, i.e. species at
neither site have an overall advantage in terms of lifetime
light capture for leaves of a given structure. Fig. 1D shows
two low-rainfall sites with different nutrient levels, which
may share a common axis but differ in location along this
axis.

It should be noted that if the slope of the relationship does
change across sites, then Questions c and d cannot be ad-
dressed. This is for the same reasons as in analysis of co-
variance – elevation and location along the line are not
comparable for lines with different slopes.
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Fig. 2. A plot of brain mass against body mass for 62 mammal
species. Humans are plotted using a larger symbol, and they
have an unusually large brain considering their size (or perhaps
a small body size considering their brain size). Data from
Allison & Cicchetti (1976).
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Fig. 3. A plot of height against basal diameter (measured at
10% height) for individual Rhus trichocarpa saplings. Data from
Osada (2005).
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III. LINE-FITTING METHODS AND THEIR USES

The three methods of bivariate line-fitting of primary
interest in this paper are best known as linear regression,
major axis (MA) estimation and standardised major axis
(SMA) estimation. The MA and SMA methods are some-
times collectively called ‘model II regression’, and SMA
is currently better known as the ‘reduced major axis ’. We
deliberately avoid using such terms in this manuscript, and
offer reasons not to use these terms in Appendix A.

Linear regression, MA and SMA are all least squares
methods – the line is estimated by minimising the sum of
squares of residuals from the line, and the methods can be
derived using likelihood theory assuming normally dis-
tributed residuals (Sprent, 1969, for example). The differ-
ences in methods of estimation of the lines are due to
differences in the direction in which errors from the line are
measured, which is illustrated graphically in Fig. 4.

Some definitions will need to be made, based on Fig. 4,
which will be useful later in understanding methods of in-
ference for these lines. An axis in the direction of the fitted
line can be defined as the ‘fitted axis ’, and an axis parallel to
the direction residuals are measured in could be defined as
the ‘residual axis ’. We will refer to scores along fitted and
residual axes as ‘ (fitted) axis scores ’ and ‘residual scores ’,
respectively. If the residual scores were shifted to have a
mean of zero, they would become residuals in the conven-
tional sense. The use of residual scores rather than residuals
is important later in discussions about elevation – but in
other cases, use of residual scores rather than residuals is not
essential.

The fitted and residual axes are useful in understanding
estimation and methods of inference for these lines. For ex-
ample, the linear regression, MA and SMA slopes can all be
derived as the value of the slope such that the residual and
fitted axis scores are uncorrelated (Warton & Weber, 2002).
Further, for the methods of inference for MA and SMA
considered in this paper, the only thing that differs between

the MA and SMA cases is the way that the residual and
fitted axes are defined.

In interpreting Fig. 4, it is important to make the dis-
tinction between two possible sources of error, described by
Fuller (1987) as measurement error and equation error.
Measurement error is generally well understood, it is where
measured values do not represent the true values of the sub-
jects being measured. Equation error is a term that is more
often neglected – it is where the actual values of the subjects
do not fall exactly along a straight line. For example, it is
apparent that humans have an unusually large brain for their
body mass (the highlighted point in Fig. 2). There are vari-
ous possible explanations for this, none of which is error in
measuring the average brain size or body mass of humans.

Note that what we describe as ‘measurement error ’ is not
only error in measurement of a particular subject, but it may
also include sampling error, if the subject of interest is a
collection of individuals (a population or species). In fact
Riska (1991) referred to measurement error as ‘ sampling
error ’, recognising variation introduced through sampling
as the main source of measurement error in most allometric
work. For example, the subjects in Fig. 2 are species, so
measurement error for brain mass includes error measuring
the brain and sampling error due to the fact that not all
individuals of a species have the same brain mass. The
subjects in Fig. 3 are individual plants, so there is no sam-
pling error in estimating basal diameter and height.
However, if the Y variable in Fig. 3 were leaf area, then
there would be sampling error. Not all leaves on a sapling
are the same size, so the measured values of leaf area would
depend on what leaves were sampled.

The distinction between measurement and equation error
has been made by other authors in the past. Equation error
has been referred to as ‘natural variability ’ (Ricker, 1982),
‘natural variation’ (Sokal & Rohlf, 1995), ‘biological error ’
(Riska, 1991) and ‘ intrinsic scatter ’ (Akritas & Bershady,
1996), amongst other terms. The implications of measure-
ment error for choice of line-fitting method are different
from the implications of equation error, but in much of the
literature (even the statistical literature) this has not been
recognised (Carroll & Ruppert, 1996).

Whereas measurement error can be estimated from re-
peated measurement, equation error can not, and its nature
depends on the purpose of line-fitting. Do humans have
unusually large brains for their body size, or unusually small
bodies for their brain size, or a bit of both? Any of these
statements is correct, so it can be appropriate to attribute
equation error to the Y variable, the X variable or both,
depending on the purpose of line-fitting.

When equation error only is present, any of linear re-
gression, MA and SMA might be appropriate methods of
analysis. When a non-ignorable quantity of measurement
error is also present, often this should be estimated and the
line-fitting methods modified to incorporate this, as will be
described below.

(1) Linear regression

Regression is a method of fitting lines for prediction of
the Y-variable. Regression involves ‘conditioning on the

Y

X

(A) regression

X

(B) MA

X

(C) SMA

Fig. 4. The direction in which residuals are measured is (A)
vertical for linear regression (B) perpendicular to the line for
major axis estimation (C) the fitted line reflected about the Y
axis for standardised major axis estimation. Axes are plotted on
the same scale. The broken lines indicate residuals, and the
arrows represent the fitted and residual axes, which are useful
for understanding methods of estimation and inference about
these lines.
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X-variable ’ (Kendall & Stuart, 1973, Chapter 26) – in other
words, regression can be used for questions of the form ‘ if
we observed a subject whose value on the X-variable is x,
what do we expect its value of Y to be?

Regression is useful whenever a line is desired for pre-
dicting one variable (which will be called Y ) from another
variable (which will be called X ). The purpose of regression
can be seen in the method of line estimation – the line is
fitted to minimise the sum of squares of residuals measured
in the Y direction,

PN
i=1 ( yix ŷ i )

2, where ŷi is the fitted or
predicted value of yi. Such a line has fitted Y values as close
as possible to the observed Y values, which is a sensible thing
to do if you are interested in predicting Y values, once given
a set of X values.

Regression is the appropriate method of line-fitting in
most practical instances, because most problems can be ex-
pressed as problems of prediction. One of the more common
research questions is ‘ is Y associated with X? ’, which can be
rewritten as ‘ for subjects with different X values, are the
expected Y values different? ’ This second question can be
answered by fitting a regression line and testing if the slope
is significantly different from zero. ‘How strongly are Y and
X associated? ’ is another question that can be answered
using regression. A suitable statistic to answer this question is
the square of the correlation coefficient, r 2, the proportion of
variation in the Y variable that can be explained by linear
regression on X.

Galton (1886) gave regression its name due to the property
of ‘ regression towards mediocrity ’ (or regression to the
mean), where predicted values of observations tend to be
closer to the mean than observed values, in general. We will
discuss this property in more detail, because it is this very
property that renders regression inappropriate for answering
some common allometric questions. Galton (1886) con-
sidered the height of parents (‘mid-parents ’, with female
heights transformed to a comparable scale as male height)
compared to the height of their children, which is re-
produced in Fig. 5. The data are scattered around the one-
to-one line, and we would expect the axis or line-of-best-fit
for these data to have slope 1. However, in this situation,
a fitted regression line will always be flatter than a slope of
1 no matter how large the dataset is. In fact, the line will
be close to a slope of r, the correlation coefficient. This
situation is natural from the point-of-view of prediction – if a
father is really tall, then his son would probably be tall too,
but not as tall as him (in the same way that if a student got a
really high score in a subject in a test – higher than they had
ever got before – then they might expect to do well in the
next test for this subject, but not quite as well as last time).

While regression to the mean is useful in prediction, it is
not appropriate when the value of the slope of the axis or
line-of-best-fit is of primary interest. For example, the allo-
metric test known as a ‘ test for isometry ’ is a test of whether
or not the slope of the line-of-best-fit is 1. This is a test of
whether one variable is directly proportional to another,
because data have been log-transformed (as in Section II).
Because the slope of the line-of-best-fit would be under-
estimated by regression, use of regression would often lead
to an incorrect conclusion about whether two variables are
isometric or not.

The following are points concerning usage of linear
regression that have occasionally been confused in the
literature :

(i ) Regression can be used irrespective of whether the X
variable is fixed by the experimenter or a random variable
(Draper & Smith, 1998, Chapter 1). To estimate a re-
gression line, the X-variable is conditioned on or ‘fixed’.
This fixing of X is a mathematical construction, but it has on
occasion been confused with experimentally fixing a vari-
able at a particular value. Some appear to have interpreted
‘regression requires fixing of the X variable ’ as meaning that
X needs to be experimentally fixed to use regression (Niklas,
1994; Quinn & Keough, 2002, for example), which we
believe is a misunderstanding arising from different uses of
the term ‘fixed’ in statistics and in experimental sciences.

(ii ) Linear regression can be used when X is measured
with error, as long as results are only interpreted in the
context of predicting Y from X measured with error. If
X has been measured with error (as it usually is), linear
regression gives a biased estimator of the slope of the re-
gression of Y against X (Fuller, 1987, p. 3). This does not,
however, mean that the use of linear regression is no longer
appropriate when there is measurement error. On the con-
trary, a simple linear regression of Y can be used to answer
some common questions – is Y related to X (Fuller, 1987,
p. 4), what is the predicted Y when X is observed (with error)
to be x…. Measurement error and regression will be con-
sidered in more detail later.

(iii ) Regression can be used to predict a causal variable,
i.e. the causal variable can be treated as the Y variable and
the outcome variable can be treated as the X variable.
Further, there does not need to be causation for regression
to be applied (Draper & Smith, 1998, for example).
Regression only requires a desire to predict one variable
from another, not causation. Confusion can arise because of
two distinct conventions – the convention in graphing of
always putting the causal variable (if there is one) on the
X axis, and the convention in regression of always putting
the predictor variable on the X axis. The variable being
predicted needs to be a random variable, so it must not be
fixed by sampling method, but what type of random variable
is predicted (causal, outcome, etc.) is entirely up to the re-
searcher.

(2 ) Major axis and standardised major axis

When there are two variables, the major axis (MA) or stan-
dardised major axis (SMA) can be used to describe some axis
or line-of-best-fit. The purpose of line-fitting is not to predict
Y from X, it is simply to summarise the relationship between
two variables. Such a line is a summary in the sense that a
single dimension is used to describe two-dimensional data.
This is also known as data reduction or dimension re-
duction.

There are at least three contexts in which these methods
are useful : (i ) allometry – when the purpose of the study is to
describe how size variables are related, typically as a linear
relationship on logarithmic scales ; (ii ) ‘ law-like relationships ’
(Sprent, 1969) are essentially the same application as
allometry but in amore general setting – testing if a particular
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(A)

(B)

Fig. 5. Galton’s height data for children and their parents, reproduced from Galton (1886). (A) Frequency table containing the data.
(B) Schematic demonstrating regression to the mean, by comparing mid-parent height (line labelled ‘mid-parents ’) with predicted
child’s height (line labelled ‘children’) for a regression based on the data in the table from (A). A child’s predicted height is much
closer to the mean than the mid-parent’s height (child’s height is about two thirds as far), hence the slope of the fitted regression is
much flatter than expected from looking at the distributions of mid-parents and children separately.
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theoretical relationship holds for data from any discipline,
e.g. is pressure inversely related to volume; (iii ) testing if two
methods of measurement agree. When the methods of
measurement are unbiased, this is a special case of ‘ law-like
relationships ’ where the true values of subjects are known to
lie on the line Y=X (the one-to-one line), i.e. there is no
equation error.

The major axis is the line that minimises the sum of
squares of the shortest distances from the data points to the
line. The shortest distance from a point to a line is perpen-
dicular to it, so in this method residuals are measured per-
pendicular to the line. The major axis is equivalent to the
first principal components axis calculated from the covari-
ance matrix, and fitted through the centroid of the data.

Implicit in minimising the distance from a point to the
line is the assumption that departures from the line in the
X and Y directions have equal importance. This is expressed
in the errors-in-variables literature by assuming that the
ratio of the variances of residuals in the X and Y directions
is 1 (although as discussed later, it is not advisable to think of
line-fitting in allometry as an errors-in-variables model).

The standardised major axis is the major axis calculated
on standardised data, then rescaled to the original axes. This
is typically done when two variables are not measured on
comparable scales, in which case it might not seem reason-
able to give the X and Y directions equal weight when
measuring departures from the line. This technique is
equivalent to finding the first principal component axis using
the correlation matrix, then rescaling data.

The direction in which error is estimated for SMA is
given in Fig. 4C. See Appendix B for further explanation.

There are many competitors to the major axis and stan-
dardised major axis methods, although these methods are
relatively infrequently used. Examples include the ‘OLS
bisector ’ (Isobe et al., 1990, the average slope of the two
linear regression lines : for predicting Y and for predicting X )
and Bartlett’s three group method (Nair & Shrivastava,
1942). The ad hoc nature of these approaches seems un-
desirable – the methods are not model-based, and lack the
geometrical interpretation of MA or SMA (MA being the
major axis of the bivariate ellipse, MA and SMA attributing
errors from the line to a known direction).

It is important to recognise that when finding a line-
of-best-fit through data, there is no single correct method.
The major axis, standardised major axis and alternatives all
estimate a line-of-best-fit in different ways, and measure
slightly different things about the data. The choice between
the major axis and standardised major axis (and some
alternatives) is based on assumptions about how equation
error is partitioned between the X and Y directions (as in
Fig. 4). However, because equation error is not a physical
entity that can be directly measured, there is no single cor-
rect way to partition it into the X and Y directions.
Statisticians describe the underlying line as ‘unidentifiable ’
(Moran, 1971; Kendall & Stuart, 1973) in this case.

The following are important points concerning the use of
major axis or standardised major axis methods.

(i ) When collecting data with a view to fitting MA or
SMA lines, subjects should be randomly selected and not
chosen conditionally on the values of the X or Y variable. In

regression, it is common for samples to be selected system-
atically to represent a large range of X values. In fact, this is
a desirable sampling strategy in regression, because it allows
the line to be estimated much more efficiently than if simple
random sampling were used. However, when fitting MA
or SMA lines, both X and Y variables are treated as random
and so need to be sampled so that they are random. If the X
variable were sampled so that the variance on this axis was
high, this would bias the major axis or standardised major
axis slope towards zero – the observed slope would usually
be flatter than the true slope.

(ii ) MA/SMA methods should not be used simply
because X is measured with error. It has on occasion been
claimed that the major axis or standardised major axis needs
to be used when the X variable is subject to measurement
error (Niklas, 1994; Sokal & Rohlf, 1995). However, if the
purpose of the line-fitting can be expressed in terms of pre-
diction, a regression method should be used instead (Carroll
& Ruppert, 1996; Draper & Smith, 1998). Confusion can
arise about the reason for using MA or SMA because these
methods attribute error from the line to the X variable as
well as Y, whereas regression attributes error to just Y, as in
Fig. 4.

(iii ) In allometry, you should not use information about
measurement error to choose between MA, SMA and re-
lated methods. In allometry, equation error will invariably
be present, and the direction in which equation error oper-
ates depends how you look at the data and not on anything
that can be measured. Harvey & Pagel (1991) estimated the
ratio of variances of measurement errors in X and Y, then
used an errors-in-variables model assuming known error
variance ratio. This model is known in the biology literature
as the structural or functional relationship (Sprent & Dolby,
1980; Rayner, 1985; McArdle, 1988; Sokal & Rohlf, 1995).
The difficulty that Harvey & Pagel (1991) encountered was
that they were only able to estimate measurement error and
not equation error, so in using this approach they essentially
assumed that equation error was either zero or proportional
to measurement error. While this approach has received
much consideration in the literature, it should not be used
when equation error is present, a point made best by Carroll
& Ruppert (1996). In allometry, equation error is often large
compared to measurement error, in which case it would be
more reasonable to assume there is no measurement error
than to assume no equation error. Alternative methods
that explicitly account for measurement error are described
below.

(3 ) Line-fitting when accounting for
measurement error

The presence of any measurement error will bias estimates
of the slope of a line (Fuller, 1987), except in some special
cases. In all studies, some amount of measurement error is
present. In this section, we will consider when measurement
error needs to be taken into account in analyses, and de-
scribe the most common method of modifying line-fitting
methods to take measurement error into account.

To discuss measurement error, some terminology is
needed. The error in X will be written as dX, and the error in
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Y as dY. The variables that are observed are not X and Y
but (X+dX) and (Y+dY). Given a measurement (X+dX),
it is not possible to tell exactly what the true value of X is
and what the error (dX) is. (If, for example we observe the
value 10.4, then we know that X+dX=10.4 but can not
solve for the values of X and dX.) It is usually reasonable to
assume that measurements are unbiased (so the true means
of dX and dY are zero), that dX and dY are independent of
each other, and that dX and dY only depend on X and Y
through their variances.

It many instances it is not necessary to account for
measurement error in X or Y when fitting a line. Typically,
this is either because measurement error is negligible, or
because the questions of interest can be answered using a
regression of (Y+dY) versus (X+dX), and there is no need to
estimate some relationship between Y and X measured
without error. The following are situations in which it is
appropriate to use regression without correcting for
measurement error :

(i ) To test if Y and X are related. Testing for an association
between (Y+dY) and (X+dX) is appropriate in this situation
(Fuller, 1987). If there is no evidence of an association
between (X+dX) and (Y+dY), then there is no evidence of
an association between X and Y.

(ii ) To predict values of Y from the observed values of X
that have been measured with error. In this case, we want
to predict Y given a value of (X+dX), and so a regression of
Y against (X+dX) should be used, in the same way that a
regression of Y versus X should be used to predict Y given a
value of X.

(iii ) In regression situations when there is measurement
error in Y only, and the magnitude of the measurement
error is not a function of Y. In this situation the regression
line of Y+dY versus X is unbiased. Measurement error
would only need to be considered if it was desirable to par-
tition error variance into the components due to equation
error versus measurement error.
Note that the first two of these cases are particularly
common in regression applications. Consequently, a large
proportion of instances where a regression line is fitted do
not require adjustment for measurement error.

It is only necessary to account for measurement error if
it is important that the fitted line describes a relationship
between Y and X, rather than between the variables
measured with error (Y+dY and X+dX). The following are
examples of this :

(i ) When slopes or correlation coefficients are to be
compared to those from other studies which may have dif-
ferent magnitudes of measurement errors. Different
amounts of measurement error bias results by different
amounts (Fuller, 1987), which would need to be accounted
for in comparisons.

(ii ) When theory predicts that the slope of the line relat-
ing Y and X should take a particular value – in such a case
clearly the slope needs to be estimated without bias. For
example, it is of interest to test if the slope of the relationship
between log(brain mass) and log(body mass) in Fig. 2 is
consistent with the value 2

3, or
3
4 (Schoenemann, 2004), or to

test if seed output of plant species is inversely proportional to
seed mass (Henery & Westoby, 2001, for example).

Note that the typical situations in which MA or SMA are
fitted correspond to one or both of these cases – so unless
measurement error is negligible, it would need to be
accounted for.

When can measurement error be considered negligible?
Akritas & Bershady (1996) were reluctant to advise on this
issue and instead recommended accounting for measure-
ment error no matter how small it may be – after all, this
approach will never lead to a biased estimator. McArdle
(2003) suggested that when considering the influence of
measurement error on a linear regression slope, a useful
procedure is to estimate the proportion of the sample vari-
ance in the X variable that can be considered to be due
to measurement error, p, and to calculate p

1xp. This is an
estimate of the proportion of attenuation, i.e. it is an esti-
mate of the proportional decrease in the estimated re-
gression slope due to measurement error. If this decrease is
of a scale that does not alter conclusions, it could be ignored.
When considering the effect of measurement error on MA
and SMA slopes, the simplest rule is to recalculate slopes
accounting for measurement error and compare these to the
original slope estimates. We have done this for several
datasets and found relatively small effects of measurement
error (slope changed by <8%). Nevertheless, we can not
claim that measurement error is generally negligible in
allometry because its magnitude will vary with the type of
variable measured and the number of repeated measures
taken on each subject.

To account for measurement error, the average
measurement error variance of observations on X and Y
needs to be estimated based on repeated measures. There
does not need to be the same number of repeated measures
for each subject, and the measurement error variance does
not need to be the same for different subjects, as described
in Riska (1991) and Akritas & Bershady (1996). More details
and examples of how to estimate measurement error are
given in Appendix C.

Before taking repeated measures to estimate a measure-
ment error variance, careful thought is often required to
identify what constitutes a repeated measurement. For
example, if the subjects in analyses are species occurring
in some region, the repeated measurements are observations
of different individuals in the region. Note that if there are
several populations in the region of interest, a representative
sample should contain (randomly selected) individuals
across all populations. Now consider a situation in which
the subjects are individuals measured during a period of a
week, but there may be systematic changes in subjects
over the course of the week (due to growth, for example).
Then repeated measurements of an individual would be
measurements taken at random times over the week.

In the presence of measurement error whose variance
is estimated from repeated measures, consistent estimators
of slopes of lines can be obtained by replacing the sample
covariance matrix by a method-of-moments estimator,
as follows. If measurement errors in the X and Y direc-
tions are independent of each other and of the true value of
X or Y,

Var(X+dX , Y+dY )=Var(X , Y )+Var(dX , dY ) (4)
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so

Var(X , Y )=Var(X+dX , Y+dY )xVar(dX , dY ): (5)

Writing out the sample estimates of these covariance
matrices term-by-term:

s2X sX ,Y

sX , Y s2Y

! "
=

s2X+dX
sX+dX ,Y+dY

sX+dX ,Y+dY s2Y+dY

 !

x
s2dX 0

0 s2dY

 ! (6)

and so the covariance matrix of the true X and Y values can
be estimated as

s2X+dX
xs2dX sX+dX ,Y+dY

sX+dX ,Y+dY s2Y+dY
xs2dY

! "
: (7)

The terms s2dX and s2dY would need to be estimated from
repeated measures as in Appendix C, the remaining terms
in the above are the sample variances and covariances of the
observed variables.

For example, consider the regression slope. The standard
estimator of the regression slope when measurement error is
not accounted for is

b̂reg=
sX+dX ,Y+dY

s2X+dX

: (8)

Replacing the relevant terms to account for measurement
error, this becomes :

b̂MM, reg=
sX+dX ,Y+dY

s2X+dX
xs2dX

=
s2X+dX

s2X+dX
xs2dX

b̂reg: (9)

This is known as method-of-moments regression (Carroll
& Ruppert, 1996). Method-of-moments regression can
also be derived as the maximum likelihood solution when
all variables are normally distributed (Fuller, 1987). An
alternative and more complicated method is available for
the case where data are species means (Kelly & Price, 2004),
and it is unclear whether there are any advantages to the use
of this method.

Adjusting for measurement error in estimating variance
terms in a similar fashion leads to the following method-
of-moments standardised major axis slope estimate :

sign(sX+dX , Y+dY )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Y+dY

xs2dY
s2X+dX

xs2dX

s

(10)

and the following method-of-moments major axis slope es-
timate :

1

2sX+dX , Y+dY

n
s2Y+dY

xs2dYxs2X+dX
+s2dX

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2Y+dY

xs2dYxs2X+dX
+s2dX )

2+4s2X+dX , Y+dY

q o
:

(11)

Akritas & Bershady (1996) proposed estimators equivalent to
the above for major axis and standardised major axis slopes
that account for measurement error. Akritas & Bershady

(1996) proposed obtaining method-of-moments regression
slope estimators and transforming these to find the MA and
SMA slope using identities relating these slopes (see Table 1
in Isobe et al., 1990). To our knowledge, no other authors
have attempted to account for measurement error when
estimating MA and SMA slopes. Instead, most authors
have taken the view that MA and SMA inherently account
for measurement error – and as previously discussed, this
will lead to biased slope estimators, except in particular
circumstances.

There are some difficulties with the use of method-
of-moments estimators of the covariance matrix in errors-
in-variables models :

(i ) While variance formulae are available for method-
of-moments regression (Fuller, 1987) and method-
of-moments MA and SMA (Akritas & Bershady, 1996),
these do not always perform well in small samples (Appendix
E). Resampling methods might need to be used to construct
confidence intervals and test hypotheses.

(ii ) It is possible, although unlikely, for the variance esti-
mates to be negative (if the estimated measurement error
for a variable were larger than its sample variance), in which
case the method should not be used until more accurate
measurements can be obtained. Something is very wrong if
most of the variation in a variable is due to inaccuracies in
measurement.

(iii ) If measurement error variance is large compared to
the sample variance, then the slope estimator can behave
erratically – the line may fit the data poorly, and the slope
estimator may be inefficient, having a large standard error.
The difficulties listed above can be addressed by using re-
sampling for inference and ensuring that measurement
error is relatively small. The size of the measurement error
variances can be controlled by the number of repeated
measurements. Whereas the precision of the measurements
themselves may not be able to be improved on, averaging
independent measurements dramatically reduces measure-
ment error – the variance of measurement error is then the
variance of a mean, which has the form s2

n , and n can be
chosen by the experimenter. For example, the variance of
measurement error is halved if the number of repeated
measurements that are averaged is doubled.

(4 ) Line-fitting for phylogenetically independent
contrasts

Often it is of interest to investigate the evolutionary diver-
gence of traits, rather than simply to investigate cross-species
patterns across traits at the present time. In such a situation,
rather than asking ‘How are brain mass and body mass re-
lated?’, it is of interest to ask ‘As mammals evolved, how
were changes in brain mass related to changes in body
mass? ’ as in Schoenemann (2004).

The most common method of addressing questions of
correlated evolutionary divergence is to analyse a set of
phylogenetically independent contrasts (Felsenstein, 1985;
Garland, Harvey & Ives, 1992). For measurements of a
variable collected for N taxa, this involves constructing
a set of Nx1 contrasts, that are (in principle) identically
and independently distributed (Garland et al., 1992).
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There has been much discussion of the issue of how to
calculate independent contrasts (Harvey & Pagel, 1991, for
example), and of the general questions for which these types
of analyses are useful (Westoby, Leishman & Lord, 1995).
In the following, we will pass over these issues and discuss
the method of fitting allometric lines given a set of contrasts
in variable X and contrasts in variable Y, across some set of
divergence events. These contrasts should be independent
and have equal variance for each variable. Details on how to
calculate such contrasts can be found elsewhere (Felsenstein,
1985; Grafen, 1989; Harvey & Pagel, 1991).

It should be noted that whereas methods of analysing
contrasts for linear regression are well established
(Felsenstein, 1985; Grafen, 1989), no methods have pre-
viously been described for fitting MA and SMA, to our
knowledge. This is despite the fact that fitting MA and SMA
for divergence data is potentially of wide interest – much
allometric work is comparative across different taxa, and it is
common in comparative work to study traits in the context
of evolutionary divergence.

All the line-fitting methods described in this paper can be
modified for use with independent contrasts by replacing
the sample means (x̄ and ȳ) with zero. This ensures that the
line passes through the origin, which is important for two
reasons. Firstly, the origin represents the point where there
is no evolutionary divergence in the two variables measured
(both X and Y divergences are zero). This point must be on
the fitted line. Secondly, the sign attached to any divergence
is arbitrary, which implies that the mean difference on X
and Y should be zero (Felsenstein, 1985), i.e. the centre of
the data is the origin. Fitting lines through the origin for
contrasts was discussed by Garland et al. (1992), although it
should be emphasised that the same logic applies equally
well to MA or SMA.

Consider, for example, the standardised major axis slope
in the absence of measurement error

b̂SMA=
sY
sX

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1 ( yix!yy)2

PN
i=1 (xix!xx)2

s

(12)

where there are N observations denoted (x1, y1), …, (xN, yN),
and x̄ is the sample mean !xx= 1

N

PN
i=1 xi . If the N

observations are independent contrasts, then x̄ and ȳ can
be set to zero, and the SMA slope estimator is

b̂SMA=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1 y

2
iPN

i=1 x
2
i

s

: (13)

IV. REGRESSION, MA, OR WHAT?

The main contexts in which different methods of line-fitting
are used have been summarised in Table 1. This can be a
useful guide in deciding which line-fitting method is appro-
priate for a given situation. It can be helpful when going
through this process to think about which statistic is of pri-
mary interest (labelled ‘key statistic ’ in Table 1). Usually, if
the statistic of primary interest is the slope (b̂ ), then MA or
SMA is appropriate rather than linear regression. On the
other hand, linear regression can always be used if primarily
interested in the P-value for the test of no relationship
between Y and X, or predicted values ( ŷ ), or the strength of
the linear relationship (r 2).

Often there can be doubt about which method is appro-
priate, and one potentially confusing point is that the same
dataset could be analysed using different methods of line-
fitting depending on what the data are to be used for. This
happened in the case of Moles & Westoby (2004), who syn-
thesised data across various demographic stages to see if the
various advantages of large-seeded species (in predation,
seedling development, etc.) compensated for the lower num-
ber of seeds produced by a parent plant of a large-seeded
species. In doing this, the question of interest was ‘do plants
with big seeds have an overall life-history advantage over
small-seeded species? ’, which is a question of prediction
where seed mass is the predictor. This at first seemed to be
an unusual line-fitting method to adopt, however, because
seed number versus seed mass is a classic example of
allometry and so such data are usually fitted with a major
axis or standardised major axis. Feigelson & Babu (1992,
p. 64) similarly present an example dataset from astronomy
where either regression or MA/SMA could be appropriate,
depending on the purpose of fitting the line.

Table 1. Which method of line-fitting should be used when

Purpose
Key
statistic Appropriate method

Predict Y from X (Xmay even be random or may include measurement error) ŷ Linear regression
Test for an association between Y and X P Linear regression
Estimate the line best describing the bivariate scatter of Y and X b̂ MA or SMA
Test if the slope equals a specific value (1, or 3

4, etc.) for the line best describing
the relationship between Y and X

b̂ MA or SMA

Estimate the strength of the linear relationship between Y and X r2 Correlation
Predict Y from some underlying X that has been measured with error,
so that only (X+d) is observed

ŷ Method-of-moments regression

Estimate the line best describing the bivariate scatter of Y and X,
when only (X+dX) and (Y+dY) are observed

b̂ Method-of-moments MA or SMA

Abbreviations : MA, major axis ; SMA, standardised major axis.
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(1 ) Major axis or standardised major axis?

To this point, no guidance has been given concerning which
is the more appropriate of the major axis and the standard-
ised major axis. This is an issue that has seen debate in the
biology literature for 30 years (Ricker, 1973; Jolicoeur,
1975, 1990; McArdle, 1988; Legendre & Legendre, 1998) a
debate that was never really resolved. Interestingly, there
has been little debate in the principal components literature,
which discusses equivalent methods.

A key point to keep in mind is that MA and SMA slopes
estimate different things about the data, and so MA and
SMA lines are not directly comparable, as emphasised by
Isobe et al. (1990) and Feigelson & Babu (1992).

In practice, these two methods give similar results if the
variances of the two variables are similar (say, within a factor
of 1.2) or if correlation is high, in which case it does not
actually matter which method is used. In fact, the methods
are identical for tests of whether a slope is equal to ¡1 or
not, which is commonly the test of interest in allometry. In
other cases, however, the major axis and standardised major
axis slopes can lead to quite different results.

There have been several general recommendations re-
garding the use of MA versus SMA that are essentially free
from controversy. These recommendations are summarised
in Table 2, although some of the points require further
elaboration:

(i ) Efficiency : while it is not disputed that SMA slopes
are estimated more efficiently than MA slopes, this result
has been interpreted in different ways in the literature. Isobe

et al. (1990) use efficiency as grounds for choosing a method
for line-fitting, hence the relatively small confidence bands
for SMA slopes are interpreted as advantageous. On the
other hand, Jolicoeur (1990) considered such narrow confi-
dence bands as ‘unrealistic ’, given that they are so much
narrower than the confidence bands for MA slopes.
However, the latter interpretation can be rejected, because
the confidence intervals for a SMA slope are known to be
exact or close to exact in most practical instances (as dem-
onstrated in Appendix E).

(ii ) Scale dependence and log transformation : it
has previously been argued that if variables are log trans-
formed, the variables are on a comparable scale, in which
case the scale dependence of the major axis is irrelevant
( Jolicoeur, 1975; Legendre & Legendre, 1998). However,
scale dependence remains an issue for log transformed
variables if the power of the X or Y variable is arbitrary. For
example, it could be argued that you could equally well plot
height versus basal area rather than height versus basal di-
ameter in Fig. 3. But basal area is proportional to the square
of diameter, so this constitutes an arbitrary scale change if
variables have been log-transformed.

(iii ) Inference in complex problems : it was explained
previously that the essential difference between MA and
SMA is that data are implicitly standardised before line-
fitting for SMA. This standardisation of data complicates
inference (Anderson, 1984; Jolliffe, 2002, for example). For
the more commonly encountered situations where a method
of inference might be required, methods have been devel-
oped for both MA and SMA, as reviewed in Sections V

Table 2. Properties of the major axis (MA) and standardised major axis (SMA) that favour one or the other for line-fitting. The
properties and recommendations listed here have a wide consensus or a strong logical basis. Some of the references given here
relate to discussion of the equivalent question in the principal components literature – use of the covariance or correlation matrix
for principal components analysis

Property Favours Favoured in what situations Explanation References

Efficiency SMA All cases SMA lines are estimated with
greater precision (standard
error of the slope is smaller).

Isobe et al. (1990) ; Jolicoeur
(1990)

Scale dependence SMA When scale is arbitrary* The major axis is scale
dependent – if all Y values
are doubled, the MA slope will
not double.

Harvey & Pagel (1991) ; Sokal
& Rohlf (1995) ; Jolliffe (2002)

Inference in
complex
problems

MA When a method of inference for
SMA is unavailable

For some complex problems,
procedures for analysis are
currently available for MA
but not for SMA.

Anderson (1984) ; Jolliffe (2002)

Assumed error
variances

MA When there is no equation error
and the measurement error
variance is equal for X and Y

The major axis assumes the error
variance is equal for X and Y,
which is often a reasonable
assumption when checking if two
methods of measurement agree.
Note that this argument does not
hold if there is equation error
(such as in allometry).

Sprent & Dolby (1980) ;
Rayner (1985)

* Scale is arbitrary if the two variables are measured in qualitatively different units (e.g. kilograms and meters). Note that if both variables
are log-transformed, units are no longer important and this consideration no longer applies, unless the power of X or Y is arbitrary (is there a
reason for plotting Y versus X rather than Y 2 versus X?).
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and VI. However, in some situations a procedure may be
available for MA but not for SMA. For example, if com-
paring the slopes of several axes that have been constructed
through three or more dimensions, the methodology of
Flury (1984) could be used in the major axis case, but no
equivalent approach is currently available for the standard-
ised major axis.
Some more controversial claims have also been made con-
cerning whether MA or SMA should be preferred. We have
summarised these in Table 3, and included some arguments
why these claims can be disputed, to emphasise that these
claims do not provide a strong basis for preferring SMA to
MA, or vice versa.

The authors tend to prefer using SMA, while also con-
sidering the use of MA or the OLS bisector approach
(Isobe et al., 1990) as reasonable alternatives in most situ-
ations. Despite fitting both MA and SMA in many contexts,
we have not yet encountered a situation where use of
MA instead of SMA led to a qualitatively different in-
terpretation of results, and we believe that such an instance
would be exceptional. However, we emphasise that it is
good practice to quote with a slope estimate the method
by which it was obtained, as emphasised by Feigelson &
Babu (1992). Different line-fitting methods estimate (slightly)
different things about the data, so a slope estimate needs
to be interpreted in the context of the method used to
estimate it.

V. INFERENCE FOR A SINGLE MA OR
SMA LINE

In this section, we will discuss methods of inference about
slope and elevation for a major axis or standardised major
axis. Table 4 summarises the calculation formulae for the
recommended methods.

(1) One-sample test of the slope

To test if the true slope is equal to some value b, a simple
approach to use is to test if the residual and axis scores are
uncorrelated, when these are calculated using b as the slope.
For example, to test if the standardised major axis slope is
equal to 2

3, calculate the variables Y+
2
3X and Yx 2

3X and
test the hypothesis that these variables are uncorrelated (as
in Fig. 6). Using this approach leads to the standard F tests
for the linear regression, major axis and standardised major
axis cases (Draper & Smith, 1998; Creasy, 1957; Pitman,
1939). These test statistics are equivalent to the likelihood
ratio tests derived assuming bivariate normality (Warton &
Weber, 2002), and are exact (where an exact test has a test
statistic that exceeds the critical value for the significance
level p with probability exactly p) if errors from the line are
normally distributed, although there is an additional as-
sumption for exactness in the MA and SMA cases. For MA
and SMA, the test does not make the distinction between

Table 3. Controversial properties of line-fitting using MA and SMA that have been claimed to favour one or the other of MA and
SMA line-fitting. We outline arguments against these recommendations in the column labelled ‘But …’

Property Favours Claim References But …

Bias when error
variance is
misspecified

SMA bSMA is more robust to
misspecification of
error variances than bMA.

Lakshminarayanan & Gunst
(1984) ; McArdle (1988)

There is no single correct specification
of equation error in allometry, so
there is no ‘ true’ error variance.

Assumed error
variances

MA For SMA, the assumptions
made of error variances
are unrealistic.

Jolicoeur (1975) ; Sprent &
Dolby (1980)

Error variances can only be claimed to
be ‘unrealistic ’ if they are due to
measurement error. We do not
recommend choice between MA
or SMA on the grounds of
measurement error.

Testing if X and Y
are related

MA bMA can be used to test for a
relationship between X and
Y, but bSMA cannot be.

Jolicoeur (1990) ; Legendre
& Legendre (1998)

It is not essential that a single procedure
be used both in testing for a relation-
ship and in estimating the best-fitting
relationship.

Permutation testing
of the slope

MA Permutation tests are not possible
for bSMA, because it is invariant
under permutation of X or
Y values.

Legendre & Legendre (1998) Permuting X or Y is only appropriate for
testing if X and Y are related.
Permutation-testing algorithms exist
for both bMA and bSMA, as in
Appendix F.

Exactness of
primary CI

MA If the secondary confidence
interval is ignored, the CI
for bSMA is far from exact
when correlation and sample
size are small (r 2<0.25, N=10).

Jolicoeur (1990) This situation is of little practical
interest. Typically, the sign of bSMA

is known a priori, in which case the CI
is exact. If not, and if N=10 and
r2<0.25 (which must be rare), the
secondary CI should not be ignored.

Abbreviations : SMA, standardised major axis ; MA, major axis ; bSMA, standardised major axis slope ; bMA, major axis slope ; CI, confidence
interval. Secondary CI : for MA and SMA slopes, there are two confidence intervals : one (usually) in the positive domain, and one (usually)
in the negative domain. The secondary confidence interval is the one that does not contain the estimated slope.
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whether it is the fitted axis or the residual axis that has a
slope close to b, so it must be known a priori which of the
sample axes is estimating the true MA/SMA axis. This is
not a restrictive assumption in allometry, where it is usually
known a priori whether a positive or negative relationship is
to be expected, and there is usually an axis along which the
vast majority of the variation is explained, as in Fig. 1–3.

For the test that b=1 (testing for isometry), the MA and
SMA tests are mathematically identical. The test in this case
is whether YxX is uncorrelated to Y+X, or in other words,
if the data were rotated by 45x, would the subsequent values
be uncorrelated? This approach is related to Tukey’s mean-
difference plots (Chambers et al., 1983), or in the medical
literature, Bland-Altman plots (Bland & Altman, 1986).

(2 ) One-sample test for elevation

For all types of lines considered in this paper, the sample
elevation is calculated so that the fitted line goes through the
centroid of the sample data (!xx, !yy). This leads to the formula
!yyxb̂!xx for all line-fitting methods. Another way to think
about the sample elevation is as the sample mean of residual
scores Yxb̂X .

The sample elevation is approximately normally dis-
tributed, and so a one-sample t-test can be used to test if
the true elevation is equal to some value a. Irrespective of
whether linear regression, MA or SMA is used, the variance
of â is approximately

s2

N
+m2

xVar(b̂) (14)

where s2 is the variance of residual scores Yxb̂X when b̂
is treated as fixed, mx is the true mean of the X variable,
and Var(b̂) is the variance of the estimator b̂ (Robertson,
1974). This expression consists of two components – the first
is due to uncertainty estimating the true centroid (mx, my)
using its sample estimate (!xx,!yy), and the second is due to
uncertainty estimating the true slope (b) using its sample
estimate ( b̂ ), as in Fig. 7. In practice, s2 and mx need to be
replaced by their sample estimates, which leads to the stan-
dard formula for the variance of elevation for linear re-
gression (Draper & Smith, 1998, for example). The
estimated variance of elevation is the same for SMA as for
linear regression, because the variance of the slope is the
same.

(3 ) Confidence intervals for slope and elevation

A confidence interval for a parameter can always be con-
structed based on a one-sample test for the parameter, by
finding the range of values for which the one-sample test is
non-significant at the chosen level of confidence. So, for
example, a 95% confidence interval for a major axis slope
could be constructed as the interval containing all values of
b such that the correlation coefficient between the variables
bY+X and YxbX is not significantly different to zero at the
0.05 level. This is the method by which the expressions for
confidence intervals in Table 4 were calculated, which are
the recommended expressions for calculating confidence
intervals (as in Jolicoeur & Mosimann, 1968; Jolicoeur,
1990, and elsewhere). We will refer to this as the exact
method of calculating confidence intervals.

Table 4. Calculation formulae for estimation of bivariate lines for linear regression, the major axis and standardised major axis,
and for inference about the slope (b) or elevation (a) from one sample

Linear regression Major axis Standardised major axis

b̂
sxy
s2x

1

2sxy
s2yxs2x+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2yxs2x )

2+4sxy

q$ %
Sign (sxy)

sy
sx

â !yyxb̂!xx As for regression As for regression
Residual axis (r) Yxb̂ X As for regression As for regression
Fitted axis (f ) X b̂Y+X Y+b̂X

Test H0 :b=b (Nx2)
r2rf (b)

1xr2
rf
(b)
! F1,Nx2 As for regression As for regression

s2
b̂

1
Nx2

s2y
s2x
(1xr2xy)

(1+b̂ 2 )2

Nx2

s2f
s2r
+ s2r

s2
f
x2

$ %x1
1

Nx2

s2y
s2x
(1xr2xy)

100(1xp)% CI
for b (primary)

b̂ts
b̂
t
1x

p
2,Nx2

1

2(sxyt
ffiffiffi
Q

p
)
s2yxs2x+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2yxs2x )

2+4s2xyx4Q
q$ %

where Q= 1
Nx2 (s

2
x s

2
yxs2xy)f1xp, 1,Nx2

b̂(
ffiffiffiffiffiffiffiffiffiffiffi
B+1

p
t

ffiffiffiffi
B

p
), where

B= 1xr2xy
Nx2 f1xp, 1,Nx2

Secondary CI for b Not applicable 1

2(sxyt
ffiffiffi
Q

p
)
s2yxs2xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2yxs2x )

2+4s2xyx4Q
q$ %

xb̂(
ffiffiffiffiffiffiffiffiffiffiffi
B+1

p
t

ffiffiffiffi
B

p
)

s2â
s2r
N +!xx2s2

b̂
As for regression As for regression

Test H0 :a=a
âxa

sâ
!approx

tNx2 As for regression As for regression

100(1xp)% CI for a âtsât1xp
2,Nx2

As for regression As for regression

Notation : we wish to estimate the line Y=a+bX from N pairs of observations of X and Y, as Y=â+b̂X . x̄ and ȳ are the respective sample
means of the observations of X and Y, sx

2 is the sample estimate of the variance of X, sxy and rxy are (respectively) the sample covariance and
sample correlation coefficient of X and Y. The variables ‘r ’ and ‘ f ’ represent residual and fitted axis scores, respectively, and rrf(b) is the
correlation between residual and axis scores, when these variables are calculated using a slope of b (not b̂). The terms t1xp,Nx2 and f1xp,1,Nx2
represent the 100p% critical values from the tNx2 and F1,Nx2 distributions, respectively. H0 means ‘null hypothesis ’.
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Several alternative methods exist for making inferences
about MA or SMA lines. Although some of the alternative
methods usually work well, the exact method is preferred on
theoretical grounds and on the basis of simulation work
presented in Appendix E. In brief :

(i ) Given the variance of the MA or SMA slope, the tNx2
distribution can be used to find approximate confidence in-
tervals (Ricker, 1973; Sokal & Rohlf, 1995; Quinn &
Keough, 2002). This requires the assumption that the sam-
pling distribution is normal, which is usually reasonable,
although not exactly true for MA and SMA slopes. Hence
confidence intervals are not exact, although they are a good
approximation (Appendix E).

(ii ) Clarke (1980) derived confidence limits for log (b̂SMA),
given that the sampling distribution of SMA (and indeed
MA) slope is closer to a log-normal distribution than to a
normal distribution. This enables good approximate infer-
ence about SMA slopes in small samples (Clarke, 1980;
McArdle, 1988).

(iii ) Isobe et al. (1990) proposed a method of making in-
ferences about the slope that makes less restrictive assump-
tions than the exact method. This method is asymptotic (i.e.
valid for large sample sizes). We found that this asymptotic
method performed poorly in small sample simulations for

both normal and non-normal data, while the exact method
was robust to non-normality, suggesting that it is not
necessary to seek more robust methods of inference
(Appendix E).

(iv) Legendre & Legendre (1998) described a method of
constructing confidence intervals for elevation, which uses
the relation â=!yyxb̂!xx to estimate confidence limits for â by
substituting in the upper and lower confidence limits for b̂ .
This method treats ȳ and x̄ as fixed, i.e. it accounts for
sample variation in estimating the slope (Fig. 7B) but not the
centroid (Fig. 7A). This method performs very poorly
(Appendix E) and should not be used, particularly when x̄
is close to zero because in this case most sample variation
in â is due to uncertainty in estimating the centroid of the
data.

VI. INFERENCE FOR COMPARING SEVERAL
MA OR SMA LINES

It is often of interest to compare several MA or SMA lines,
as in the leaf allometry example (Section II, Fig. 1B–D). The
types of hypotheses of interest are analogous to analysis of
covariance, although for lines calculated using MA or SMA
estimation rather than using linear regression. Most of the
testing procedures described here were proposed relatively
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Fig. 6. A one-sample test of the standardised major axis (SMA)
slope is a test for correlation between residual and fitted axis
scores. (A) An example dataset (Allison & Cicchetti, 1976), with
residual and fitted axes for SMA included, under the hypothesis
that the SMA slope is 2/3. (B) Residuals plotted against fitted
axis scores under this hypothesis. Note there is a trend in the
residual plot for increasing residuals as axis scores in-
crease – this is evidence against a SMA slope of 2/3.
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Fig. 7. Schematic diagram showing the two sources of error in
estimating elevation, a. (A) Uncertainty estimating the centroid
(mx, my) affects elevation. (B) Uncertainty estimating the slope of
the line b affects elevation (and has greater effect the further mx
is from the Y-axis).
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recently (Warton & Weber, 2002) or are proposed in this
paper.

Calculation formulae for the multi-sample tests are de-
scribed in Appendix D. These formulae tend to have a more
complicated form than for one-sample tests.

(1 ) Testing for common slope

Testing for common slope amongst several lines, as in
Fig. 1B, is a first step in making inferences about several
lines. This test is a necessary preliminary to testing for equal
elevation or no shift along the axis, given that such tests
make little sense unless the lines being compared share a
common slope. However, testing for common slope is of
interest in its own right, because in allometry inferences
about the slope of the line are usually of primary interest.

In the case of linear regression, an F-statistic is con-
structed to compare the sums of squares when a common
slope is fitted and the sums of squares when each group is
fitted with a regression line of different slope (Sokal & Rohlf,
1995, for example). One might think that a similar approach
could be used in the MA and SMA cases, but with sums of
squares defined differently, as suggested by Harvey & Mace
(1982) and others. However, this statistic does not follow
the F distribution needed for comparing several MA or
SMA slopes (Appendix E, see Table 11), presumably be-
cause the numerator and denominator sums of squares
are not independent. Further, this method assumes equal
residual variances across groups, which is not always
reasonable, and does not need to be assumed in alternative
test statistics (Clarke, 1980; Flury, 1984; Warton & Weber,
2002).

We recommend using a likelihood ratio test for common
MA or SMA slope, and comparing it to a chi-squared dis-
tribution (Flury, 1984; Warton &Weber, 2002). Calculation
details can be found in Appendix D. The test was derived
assuming bivariate normality, although it is known to be
robust to non-normality (Warton, in press). This same test
was proposed for MA slopes in the appendix of Harvey &
Mace (1982) and attributed to J. Felsenstein, although
an algorithm for estimating the common slope was not
described. Flury (1984) developed common principal com-
ponents analysis, and described a method of common
slope estimation that can be used for major axes (and
can also be used for more than two variables). Warton &
Weber (2002) modified the method due to Flury (1984)
for the bivariate standardised major axis case. Warton
& Weber (2002) also demonstrated that when the test
statistic is used with Bartlett corrections, it is well approxi-
mated by the chi-squared distribution even when sample
sizes in each group average 10 and when data are not
bivariate normal, but errors from the line are normally
distributed.

When using the likelihood ratio tests of Flury (1984)
or Warton & Weber (2002), the common MA/SMA slope
estimator does not have a closed form solution, and so is
calculated by iteration (and available software does this in
negligible time). Alternative slope estimators could be used,
for example, the pooled sums of squares could be calculated
across groups and the standard slope estimator used

(Krzanowski, 1984), which is analogous to the estimator of
the linear regression common slope. This has the advantage
of being simpler to calculate, although it has the disadvan-
tage of making more restrictive assumptions – pooling sums
of squares implicitly assumes that the covariance matrix is
the same for all groups, and the procedure performs poorly
when groups have the same slope but different variances or
correlations (as in simulations, Appendix E, see Table 11).
In practice, variances and correlations can be quite different
for different groups (as in the example in Warton & Weber,
2002), so pooling of sums of squares can not be rec-
ommended in general.

An alternative method of comparing two SMA slopes
was proposed by Clarke (1980), and reviewed in McArdle
(1988). The test maintains close to exact significance levels
in small samples, as does the likelihood ratio test (Warton
& Weber, 2002), although the test due to Clarke (1980)
does not compare more than two SMA slopes. The method
due to Clarke (1980) could be modified to compare several
SMA slopes using a Wald test, along the lines of the test for
equal elevation described later. While this method is a
reasonable alternative, we lean towards using the likelihood
ratio test, given that it is a single procedure that can be used
for both MA and SMA, and it is known to have good
properties.

Warton & Weber (2002) describes a procedure for testing
for common slope in a more general context than MA and
SMA – when the error variance ratio is unknown. The error
variance ratio determines the direction of the residual axis,
which can be anywhere from vertical to horizontal. Different
choices of error variance ratio lead to different slope esti-
mates and (usually slightly) different results in multi-sample
inference. Issues relating to choice of error variance have
been discussed previously. If one is uncomfortable with the
choice of MA versus SMA or an alternative slope estimator,
then testing for common slope with an unknown error
variance ratio offers a conservative test, giving the smallest
possible test statistic across all possible choices of error
variance ratio.

A confidence interval can be constructed for the common
slope, using likelihood ratio techniques. The method has not
previously been described in detail in the literature,
although it is relatively straightforward in principle. A like-
lihood ratio statistic for testing if the common slope equals
some value b (H0 :bi=b Ha :bi=blb for each i), can be
constructed, as in Appendix D. A confidence interval is
then the interval containing all possible values of b for which
the test statistic is not significant (at the chosen level of
confidence). Although the confidence limits are not easily
written in closed form, they can be computed using an
optimisation algorithm.

(2 ) Testing for common elevation

As was described in relation to Fig. 1C, it is often of interest
to test for equal elevation amongst several lines that have
been fitted with MA or SMA lines of common slope. We
propose using a Wald statistic for inference, as described in
Appendix D, in preference to the F-statistic that has received
some attention in the literature. We will briefly describe the
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F statistic first, explain its problems, then describe the Wald
statistic.

Harvey & Mace (1982) and others suggested using
analysis of variance of residual scores as a test for common
elevation, which we refer to as using an F statistic. This
method was used by Wright, Reich & Westoby (2001). The
reasoning behind this approach is that the sample elevation
can be calculated as the sample mean of the residual scores,
Yxb̂comX , so testing for equal means of the residual scores
is equivalent to testing for equal elevation. Note that in cal-
culating the residual scores, b̂com is the estimated common
slope, because the lines being compared must have common
slope for the test of elevation to be meaningful. As far as we
are aware, no other procedure for comparing elevations of
MA/SMA has previously been proposed.

The problem with the F -test is that while it accounts for
uncertainty in estimating the centroid of each group, it does
not consider uncertainty estimating the common slope – in
Fig. 7, (A) is accounted for but (B) is ignored. This is not a
problem if the mean of the X variable is the same for all
groups. However, the F statistic can depart considerably
from an F-distribution when there is a common elevation,
but the means of the X variable differ systematically among
groups (Appendix E, see Table 13). In this situation the error
estimating b̂com has different consequences for the sample
elevation of groups with different X means, such that the
sample elevations have unequal and correlated error. By
contrast, the F statistic assumes that the sample elevations
have equal and uncorrelated error. Resampling in an ap-
propriate fashion (as described in Appendix F) can ensure
valid inference despite this, however a simpler alternative is
to use a different test statistic.

A Wald statistic, as described in Appendix D, can be re-
commended for comparing several elevations. This is a
simple type of statistic that is traditionally used for inference
(Rao, 1973, for example) in situations such as this one, when
it is difficult to calculate the null likelihood function hence
the likelihood ratio statistic (a statistician’s first choice test
statistic). Wald statistics are commonly encountered – they
appear in the standard output from most statistics packages
for multiple linear or logistic regression (often labelled ‘ t ’
and ‘Z ’ statistics, respectively). A Wald statistic simply
tests if parameter estimates are significantly far from their
hypothesised values, by comparing the distance from hy-
pothesised values to its standard error. In testing for common
elevation, there are several parameters of interest, so the
Wald statistic involves a vector of parameters and their
covariance matrix. By using the correct formula for the co-
variance matrix, which is a multivariate version of s2

â
from

Table 4, the Wald statistic incorporates both the sources of
uncertainty illustrated in Fig. 7. This statistic was demon-
strated in simulations to maintain close to exact Type I error
(Appendix E) irrespective of possibly unequal sample sizes,
correlations, and means of the X variable.

(3 ) Testing for no shift along a common axis

Fig. 1D describes a situation in which it was believed that
data from two sites were scattered around a common axis,
with no difference in elevation, but it was hypothesised that

there might be a shift along the axis. It was believed that
both sites would contain species sharing a common trade-off
between the two leaf traits, however in the higher nutrient
site, species would generally have shorter-lived leaves with
higher leaf mass per area.

We propose a Wald test for equal mean fitted axis scores.
The fitted axis scores measure the location of a point along
the fitted axis, so it is natural to test for shift along the axis
using the mean fitted axis score of each group. As explained
in Appendix D, this is equivalent to a test for equal elevation
of the (standardised) minor axis of each group, i.e. of the line
fitted through the centroid which is in the direction of the
residual axis. Consequently, the method of testing is very
similar to testing for common elevation (Appendix D).

Wright, Reich & Westoby (2002) tested for no shift along
a common axis using an analysis of variance of the axis
scores. This was done given the lack of an alternative pro-
cedure, and is not recommended. This procedure does not
account for sampling error in estimating the common slope,
as for the F statistic for common elevation, and so this pro-
cedure is sensitive to differences in means of the X variable
that are not attributable to shifts along the fitted axis.

VII. INFERENCE FOR RELATED
LINE-FITTING METHODS

This section shows how the methods of inference described
in this paper can be modified for use with related line-fitting
methods : MA or SMA without an intercept, and in the
presence of measurement error.

(1) MA or SMA with no intercept

If MA or SMA lines are forced to go through the origin (as
for divergence data), the methods of inference described in
this paper can still be used, after two simple changes :

(i ) The averages of the X and Y variables are set to zero in
all calculation formulae. This affects calculation formulae
via changes to the sample variances and covariance of X and
Y, which become sums of squares and products of xi and yi
rather than of (xix!xx) and (yix!yy):

(ii ) In calculation formulae of Table 4 and Appendix D,
all terms of the form (Nx2) or (nix2) should be replaced by
(Nx1) and (nix1), respectively. These terms represent the
residual degrees of freedom. Because the elevation is fixed at
zero, there is only 1 parameter to be estimated (not 2), so the
residual degrees of freedom are 1 less than the sample size
(not 2 less).
For example, when given N pairs of phylogenetically inde-
pendent contrasts (x1, y1), …, (xN, yN), the estimated SMA
slope with the line forced through the origin is

b̂SMA=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1 y

2
iPN

i=1 x
2
i

s

: (15)

A 100(1xp)% confidence interval for b has the same form
as that given in Table 4:

b̂(
ffiffiffiffiffiffiffiffiffiffiffi
B+1

p
t

ffiffiffiffi
B

p
) (16)
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except now B= 1xr2xy
Nx1 f1xp, 1,Nx1, where rxy is the sample

correlation coefficient calculated without centering the data :

r2xy=

PN
i=1 xi yi

$ %2

PN
i=1 x

2
i

PN
i=1 y

2
i

: (17)

The only changes that have been made here to the relevant
formulae of Table 4 are that sample means have been
replaced with zero, and Nx2 has been replaced by Nx1.

Note that if the lines are forced through zero, it is
no longer of interest to make inferences about elevation,
because the elevation of all lines is exactly zero.

(2 ) MA or SMA adjusting for measurement error

Method-of-moments MA was proposed by Akritas &
Bershady (1996, Section 3) and discussed together with
method-of-moments SMA in Section III herein. Akritas
& Bershady (1996) presented a variance formula for
method-of-moments MA, which can be extended to
method-of-moments SMA using the relevant formula in
Table 1 of Isobe et al. (1990).

A simple alternative to the method of Akritas & Bershady
(1996) is to use the recommended methods of inference for
when there is no measurement error, after adjusting the
variance estimates to account for measurement error. This is
in fact the method that Akritas & Bershady (1996) used,
although they modified the formulae from Isobe et al. (1990)
rather than the formulae for exact methods.

Simulations in Appendix E suggest that it is better to use
the asymptotic method due to Akritas & Bershady (1996)
than to modify exact methods of inference, but only in
moderate to large samples (N>30). In small samples where
there is non-negligible measurement error, it may be
necessary to use resampling, given that no suitable alterna-
tive has been found. Carroll, Ruppert & Stefanski (1995,
Appendix A.6) provide some guidelines for resampling
measurement error models.

Further studies investigating methods of inference for
measurement error models would be useful. In particular,
we only conducted simulations to consider confidence

interval estimation of method-of-moments MA or SMA
slopes, and we did not consider other types of inference
problems.

VIII. ROBUSTNESS OF INFERENTIAL
PROCEDURES TO FAILURE OF ASSUMPTIONS

Several assumptions are made in the above inferential
procedures, and it is important to know how sensitive in-
ferences are to these assumptions, and what can be done to
check that the assumptions are satisfied. These issues are
summarised in Table 5, drawing on general design prin-
ciples (Cox, 1958), robustness of linear models in general
(Miller, 1986), and recent work on the robustness of
inferences about MA and SMA (Warton, in press).

Some of the points in Table 5 require some further
elaboration:

(i ) Normality is the least important assumption, because
the central limit theorem ensures robustness to failure of this
assumption (see Appendix E for examples of this robustness).
However, an important consideration with non-normality is
loss of power – least squares methods have low power for
data from long-tailed distributions (Staudte & Sheather,
1990, for example).

(ii ) Resampling will rarely help ensure robustness to
failure of assumptions for linear models. Resampling algor-
ithms are described in Appendix F, but these implicitly
assume independence, linearity and equal variance. Even
when residuals are non-normal, resampling only ensures
valid inference, it does not generally ensure higher power, if
the same test statistic is used. Resampling might be useful for
small samples, when residuals are moderately non-normal,
but its main use is for inference when alternative methods
are unavailable, not as a method of robust inference.

(iii ) Robust alternatives to MA and SMA could be drawn
from the principal components analysis literature (reviewed
by Jolliffe, 2002, Section 10.4). There are two general
approaches for robust principal components lines – using
robust estimators of the covariance matrix, or using different
criteria for line estimation. A simple example of using robust

Table 5. Assumptions of methods of inference for MA and SMA, how to check them, and when these assumptions matter

Assumption Is it satisfied? Does this matter? Reference

Residuals are independent Sample randomly to guarantee
this is satisfied

Yes! If there is dependence,
standard errors/CIs are usually
too small

Cox (1958, Chapter 5)

Residuals are normally
distributed

Check quantile plot of residuals Not usually, although low power
for long-tailed data

Miller (1986)

Y and X are linearly related Check carefully a plot of residual
versus axis scores for no pattern

Yes! Common slope tests are
sensitive to non-linearity

Miller (1986) ; Warton
(in press)

Residuals have the same variance
at all points along the fitted line

Check plot of residual versus axis
scores for no pattern

Yes, but most methods are robust
to moderate departures from
equal variance

Warton (in press)

Note that ‘residual scores ’ and ‘axis scores ’ here refer to the variables given in Table 4, with a change of scale if desired. For testing for no
mean shift along a fitted axis, all assumptions apply to fitted axis scores rather than to residuals.
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estimates of variances is to calculate the robust SMA slope as
the ratio of median absolute deviations, and calculate the
elevation so that rather than passing through the centroid, it
passes through the point (~xx, ~yy) where ~xx and ~yy are sample
medians rather than means. An example of an alternative
line-fitting criterion is to estimate a robust MA slope by
finding the rotation of the data for which some robust
measure of correlation is zero (Isler, Barbour & Martin,
2002). In using such techniques, resampling-based inference
may be required, because of a lack of development of
alternative methods of inference.

IX. SOFTWARE

Most of the inferential procedures described in this paper
are not available in standard software packages. With the
exception of one-sample tests of slope, specialised computer
software is required for all methods of inference. Such soft-
ware is available in several formats : (i ) as a stand-alone
package known as (S)MATR, with accompanying docu-
mentation http://www.bio.mq.edu.au/ecology/SMATR/;
(ii ) as spreadsheet formulae in Microsoft Excel ; (iii ) as an R
package ; (iv) as a Matlab toolbox.

All software can be found from the first author’s website
http://web.maths.unsw.edu.au/~dwarton/programs.html.
The Excel spreadsheets do not include software for testing
hypotheses about elevation or shift along the axis.

X. CONCLUSIONS

(1) In selecting a method of line-fitting, it is essential to
consider what the line is to be used for and whether
measurement error is negligible or not (Table 1).

(2) The distinction between equation and measurement
error has often been made in previous reviews, however we
believe that the different consequences of the different
sources of error have not been sufficiently appreciated.

(3) When equation error is present, the type of line-
fitting method to use is determined by the research question
of interest, as in Table 1, and not by estimates of error
magnitude.

(4) When measurement error is present, its magnitude
should be estimated. This allows the impact of measurement
error on results (in particular, on the estimated slope) to be
considered and corrected for, if required.

(5) For the first time, users of the major axis and stan-
dardised major axis have available a set of tools for the most
commonly encountered tasks in allometric analysis – for in-
ference about the slope or elevation of a single line, and for
comparing several lines in a framework analogous to
analysis of covariance.

(6) We have described how to modify methods of infer-
ence for use when data are phylogenetically independent
contrasts or are measured with error.

(7) There are several areas where further methodological
research would be useful :

(a) Improved inference about method-of-moments
lines – currently, methods of inference about such lines are

only approximate, and in small samples the approximation
can perform poorly (Appendix E).

(b) Robust alternatives to MA and SMA – the MA
and SMA methods are special cases of least squares ap-
proaches. Such methods of estimation are known to lack
robustness to outliers, hence they are inefficient for long-
tailed distributions.

(c) Inference for SMA when there are more than two
variables – whereas the methods of inference for MA have
natural extensions to more than two dimensions, the data
standardisation for SMA complicates inference.
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XIII. APPENDIX A. TERMINOLOGY

This appendix briefly reviews some alternative terminology
used for line-fitting methods. Methods of line-fitting have
been known under a variety of names, as reviewed in
Table 6. A few of these terms are misleading, hence not
recommended for general use :

(i ) ‘Model II regression’ (Sokal & Rohlf, 1969). This
commonly used term is misleading on two counts – the
method does not involve regression, and is not model II, in
the senses in which these terms were first used. The term
‘regression’ was first used because of the property of
‘regression to the mean’, a property that the user is trying
to avoid with MA and SMA methods. The term ‘model II ’
was originally suggested under the belief that what dis-
tinguishes MA and SMA methods from linear regression is
that the X variable is random not fixed, which is the differ-
ence between model I and model II analysis of variance
(ANOVA) as defined by Eisenhart (1947). However, the
distinction is not random versus fixed X, it is that a line-
of-best-fit is required rather than a line for predicting Y. It
is true that the X variable must be random to use MA or
SMA, but it is not the case that X has to be fixed for linear
regression (for more details, see Section III.1). A closer
analogy to MA or SMA is ANOVA where between-group
differences are in part attributed to misclassification of sub-
jects (this is rare in practice).

(ii ) ‘Errors-in-variables models ’ is a term used widely in
the statistical literature for line-fitting when there is
measurement error in both variables. However, MA and
SMA are not used because there is measurement error (as
described previously).

(iii ) ‘Functional relationship’ and ‘structural relation-
ship’ are terms that were used to describe major axis and
standardised major axis methods in the statistics literature
throughout most of the second half of the 20th Century.
However, these terms have different meanings in other

literatures. For example, to many biologists, a functional
relationship is a causal relationship.
There are two further terms that are not misleading, how-
ever more appropriate terms are available :

(i ) ‘Geometric mean functional relationship ’ is an
alternative to ‘ standardised major axis ’ that gets its name
from the fact that the slope estimator is the geometric mean
of the two linear regression slope estimators. While this is an
interesting property, the method is more naturally described
as a standardised version of the major axis.

(ii ) ‘Reduced major axis ’ is not as specific a term as
‘ standardised major axis ’, which makes it clear that the
modification that has been made to the major axis method is
standardisation of data. According to Jolicoeur (1975), the
term ‘reduced’ was introduced by Kermack & Haldane
(1950) as an inaccurate translation of the French word ‘re-
duit ’, which is better translated as ‘standard’ or ‘ standard-
ised’ than as ‘reduced’.

XIV. APPENDIX B. DERIVATIONS OF THE
LINE-FITTING METHODS

In this section, we outline alternative derivations of each of
linear regression, major axis and the standardised major
axis. There are two different ways of thinking about themajor
axis and standardised major axis : as errors-in-variables
models, and as lines used to summarise the variance/
covariance relationships between two variables. We prefer
the latter approach, but present both for completeness.

Table 6. Terminology for methods of line-fitting. The first
column contains terminology that is used in this manuscript,
and is recommended for general use, and the second column
contains terms that are equivalent to the proposed term, and
have been used in the past

Preferred term
Other equivalent
terms

Example
reference

Linear regression Model I regression Sokal & Rohlf (1995)
Principal
components

Principal components
analysis

Jolliffe (2002)

Model II regression Sokal & Rohlf (1995)
Errors-in-variables
models

Fuller (1987, p. 30)

Structural or
functional
relationship

Lindley (1947)

Major axis First principal
component axis
of the covariance
matrix

Jolliffe (2002)

Orthogonal regression Isobe et al. (1990)
Standardised
major axis

Reduced major axis Kermack &
Haldane (1950)

Geometric mean
functional
relationship

Ricker (1973)
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In all cases, we consider N independent observations
(X, Y) of the two random variables (X, Y ), the ith obser-
vation being (xi, yi). The variances of X and Y are sX

2 and sY
2 ,

respectively.

(1 ) Linear regression as a conditional model

Similar derivations can be found in Draper & Smith (1998)
and elsewhere.

Here we wish to predict Y, given observed values of X,
assuming a linear relationship between these variables.
Hence we assume

E(Y jX=xi )=a+bxi: (18)

The estimate of E(Y |X=xi) will be written as ŷi. If least
squares estimation is used, then we wish to find values of
a and b that minimise

XN

i=1

( yix ŷ i )
2: (19)

This leads directly to the linear regression formulae in
Table 4.

If we were to assume that Y |X=xi is normally distributed,
then the least squares solution would also be the maximum
likelihood solution.

(2 ) Summary of bivariate data

The major axis and standardised major axes can be derived
as principal component vectors ( Jolliffe, 2002; Warton &
Weber, 2002) i.e. as summaries of a bivariate relationship
rather than as underlying models.

Under this derivation of the (standardised) major axis, we
assume only that X and Y are linearly related, hence their
relationship is well described by the covariance matrix

S= s2
X sXY

sXY s2
Y

! "
: (20)

Further, we would like to summarise this covariance re-
lationship using a single axis. A good choice is the major
axis – the axis along which the variance of axis scores is
maximised. This is the first eigenvector of S, i.e. the slope of
this axis, b, satisfies

1

1+b2
1 b

xb 1

! "
S

1 xb
b 1

! "
= lf 0

0 lr

! "
(21)

where lf>lr. When S is replaced by the sample covariance
matrix, solving equation 21 for b yields the major axis slope.
Subsequent estimates of lf and lr are the sample variances
of scores along the fitted and residual axes, respectively.

In fitting a major axis to S, X and Y are treated as if these
variables are measured on comparable scales. If these vari-
ables are measured in different units, then they should be
standardised prior to fitting the major axis. This means that
the axis is fitted to the correlation matrix R rather than S, so
we find the slope (c) of the axis that satisfies :

1

1+c2
1 c

xc 1

! "
R

1 xc
c 1

! "
= l(R)f 0

0 l(R)r

! "
: (22)

This has the solution c=sign(sxy) such that lf
(R)>lr

(R). Back-
transforming to the original scale, the slope of the standard-
ised major axis is

b=sign(sxy)
sY

sX
(23)

and the estimating equation can be written in a form anal-
ogous to equation 21 as

1

2

1 1
b

xb 1

! "
S

1 xb
1
b 1

! "
= l*f 0

0 l*r

! "
(24)

or

1

2b
b 1

xb 1

! "
S

b xb
1 1

! "
= lf 0

0 lr

! "
: (25)

Notes about these derivations :

(i ) The matrices
1 b

xb 1

! "
in equation 21 and

b 1
xb 1

! "
in equation 25 each apply a linear transform-

ation to the measured variables
X
Y

! "
, such that the sub-

sequent variables are the fitted and residual axes,
respectively.

(ii ) In both equations 21 and 25, finding the solution is
equivalent to maximising lf and minimising lr, i.e. max-
imising the variance of fitted axis scores, and minimising the
variance of residual scores.

(iii ) If it were assumed that (X, Y) is bivariate normal,
then the sample estimators of the major axis slope and
standardised major axis slope are maximum likelihood esti-
mators under a reparameterisation of the covariance matrix.

(iv) Here we have treated the data-generating mechanism
as bivariate, and we use the (standardised) major axis as a
one-dimensional summary of the data. This is in contrast to
the errors-in-variables model (presented below), in which
the line is believed to be a true model for the data, i.e. we are
trying to estimate an underlying line from which the data
were generated.

(3 ) Errors-in-variables models

Similar derivations to the following can be found in Sprent
(1969) and Moran (1971), for example.

Both Y and X are estimated with error as Yi+dYi and
Xi+dXi

, and we believe that there is some underlying linear
relationship between X and Y :

Yi=a+bXi (26)

We assume that the errors (dXi
, dYi ) are independent of each

other and of the true values (Xi, Yi). The variance of errors is
(s2

dX
, s2

dY
), constant for all N observations.

In this situation, the line is unidentifiable (Moran, 1971),
unless further assumptions are possible based on additional
information about the measurement error variances. The
three different line-fitting methods can all be derived from
the above model, by using least squares estimation after
further assumptions about measurement error : (i ) for linear
regression, assume s2

dX
=0, i.e. there is no error in the X

variable ; (ii ) for the major axis, assume s2
dX
=s2

dY
, i.e. the
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error variance has the same magnitude for X and Y ;

(iii ) for the standardised major axis, assume
s2
dY

s2
dX

= s2
Y

s2
X
,

i.e. the relative magnitudes of error variances in X and
Y is the same as the relative magnitudes of the variances
in X and Y.

As previously, if we were to assume that (dYi , dXi
) are

normally distributed, then the least squares solutions would
also be the maximum likelihood solutions.

A few notes on this derivation :
(i ) This type of model is useful in situations in which

there is no equation error, i.e. when the true values of each
subject (Xi, Yi ) would lie exactly on the line if they were
measured without error. In this situation, the magnitude
of error (dXi

, dYi ) can be estimated from repeated measure-
ments, to inform assumptions about error variances. On
the other hand, when (dXi

, dYi ) are equation error, the
values on the line (Xi, Yi) are no longer ‘ true’ values that
are physically expressed, and so repeated measurements
are no longer informative about the magnitude of error.
Hence we find the previous derivations of line-fitting
methods more useful for allometry than an errors-in-
variables derivation.

(ii ) Although linear regression can be derived as an
errors-in-variables model with no error in the X variable,
the derivation as a conditional model is more useful in
practice, and we advise the reader to think of regression as
a conditional model to avoid misinterpretations. In par-
ticular, linear regression can be used when there is error in
X, as long as one is interested in predicting Y conditional on
values of X that have been measured with error.

(4 ) SMA as the minimiser of a sum of
triangular areas

Another derivation of the standardised major axis (Teissier,
1948) finds the line that minimises the sum of triangular
areas between the line and each data point. This quantity is

XN

i=1

1

2
xix

yixa

b

! "
(a+bxixyi )=

XN

i=1

1

2b
(yixaxbxi )

2

(27)

for a line of the form Y=a+bX. Solving for a we get
â=!yyxb!xx, where as usual x̄ and ȳ are the sample means of X
and Y observations, respectively. The sum of triangular
areas then simplifies to

XN

i=1

1

2b
( yix!yyxbxi+b!xx)2: (28)

This equals the variance of the residual scores lr from
equation 25 (when the covariance matrix has been replaced
by its sample estimate). Hence minimising this quantity is
equivalent to solving equation 25.

We are unaware of any theoretical reason why one
might wish to minimise a sum of such triangular areas.
Consequently, we regard this derivation as a geometric
peculiarity, and do not consider it to be useful in under-
standing the properties and uses of the standardised major
axis.

XV. APPENDIX C. ESTIMATING
MEASUREMENT ERROR VARIANCE

This appendix outlines how to estimate the variance of
measurement errors, or the average measurement error
variance if this differs across subjects. If the variable being
measured is X, and it is measured with error as X+dX, then
we would like to estimate a quantity s2dX such that an un-
biased estimator of the variance of X is

s2X+dX
xs2dX (29)

where s2X+dX
is the sample variance of the X subjects that

were measured with error. To estimate s2dX , the only re-
quirement is that repeated measurements of X+dX must be
available.

To define some notation – let us say that N values of X
were sampled, and random variables representing each
of these N subjects are X1+dX1 ,X2+dX2 , . . . ,XN+dXN

.
There are ni repeated measurements of the ith subject
(Xi+dXi

), where the number of repeated measurements is
not necessarily equal for all subjects (and so ni is a function of
i ). The repeated measurements of Xi+dXi

measured with
error are xi+dxi , 1, xi+dxi , 2, . . . , xi+dxi , ni .

Note that measurement error variance should be esti-
mated on the scale on which the lines are to be fitted. For
example, in Fig. 2, error variance is estimated for log(brain
mass) not for brain mass.

Note also that it can require careful thought to deter-
mine what units represent replicate measures of a
subject – individuals of a species from throughout their
known distribution (for Fig. 2) or repeated measurements on
an individual (for Fig. 3), etc.

The repeated measurements are most often averaged to
estimate X1+dX1 ,X2+dX2 , . . . , but this does not need to
be the case. In particular, the log of a variable might
be analysed (as in Fig. 2 and Fig. 3), but the species
means might be estimated before log transformation, to
preserve the interpretation of the species value as an
average. In this appendix, methods of estimating the aver-
age measurement error variance sd

2 are described for the
following cases : (i ) when all Var(di) are equal ; (ii ) when
not all Var(di) are equal ; (iii ) in a leaf mass per area example,
where repeated measurements are not averaged on the log
scale.

(1) All measurement errors have equal variance

The first case to be considered is the simplest one – where
the variance of measurement error on each subject is equal.

In this case, the variance of measurement error can be
estimated using 1-factor analysis of variance. The factor
used in analysis is the subject (X1, X2, …), which is species in
Fig. 2 or individual in Fig. 3. The observations within groups
are the measurements taken of the subject, which are
measurements of log(brain or body mass) for different in-
dividuals of a species in Fig. 2, or remeasurements of
log(height or basal diameter) for the same individual in
Fig. 3. An estimate of average measurement error variance
can be obtained using the mean squared error of the analysis
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of variance (MSE) as

s2dX=
MSE

N

XN

i=1

1

ni
(30)

(2 ) Measurement error variances not equal

It is often the case that measurement errors do not have
equal variance for different values of X. For example, in
measuring average seed mass for an individual plant,
measurement error might largely be due to the measure-
ment process itself (rather than due to sampling error). The
standard error of repeated measures on a set of scales might
be 0.05 grams, for example, irrespective of the size of the
seed. While this is not a function of seed mass, it will be a
function of log(seed mass), as 0.05 grams is relatively larger
for small seeds than for large seeds.

To estimate average measurement error variance, the
sample variances of repeated measures of each subject
are first calculated, s2dX1

, s2dX2
, . . . , s2dXN

. These are then
combined as:

s2dX=
1

N

XN

i=1

s2dXi
ni
: (31)

If the same number of repeated measures are taken for all
subjects, this estimate will be the same as the one proposed
in the previous section. Riska (1991) and Akritas & Bershady
(1996) independently arrived at this estimator of measure-
ment error for linear regression.

(3 ) When the data are not averages of repeated
measures

On some occasions, a variable used in line-fitting might be a
function of repeated measures, but it might not simply be an
average of these measures on the scale on which data are
analysed. In these cases a simple formula such as equation
(31) does not apply. Alternatives are either to derive an
alternative formula, or to use a resampling approach to es-
timate measurement error variance.

One approach that can be used to arrive at an estimate of
measurement error variance is to use the following result :

Var(g(X )) " g0(m)2Var(X ) (32)

where gk(m) is the derivative of the function g(x) evaluated at
m, and as usual Var refers to the variance (Kendall & Stuart,
1969, Sections 10.6 and 10.7). This result is only an ap-
proximation, made by assuming that over the range of
values of X that are observed, g(x) is approximately linear.
The approximation will work better when X is less variable
and when g(x) is closer to linear.

Using this result, if repeated measurements are averaged
on the untransformed scale, and then averages are used in
analysis on the log scale,

s2dXi
" 1

!xx2i
s2Xi

(33)

where !xxi is the sample mean and s2Xi
is the sample variance

of the repeated measures for the ith subject. If data
are transformed using log10(x) for analysis, then s2dXi

is

approximated as (log10e)
2 multiplied by the expression in

equation (33).

(4 ) Example – log(LMA) using species averages

Consider the calculation of measurement error when esti-
mating leaf mass per area (LMA) in kg mx2 for the data
used in Wright et al. (2001). Measurements were taken of
LMA and other leaf traits, for about 20 species in each of
four sites. Several individuals were sampled of each species,
and the average of LMA calculated for each species.
Standardised major axes were estimated to find the slope
of the line of best fit relating LMA and a measure of
photosynthetic rate (Amass), when both variables were log-
transformed.

Although the log-transformation was used for analysis,
the species means and measurement error were not esti-
mated from repeated measurements on the log-transformed
data. Instead, species means were estimated on the un-
transformed scale (kg/m2 for LMA), for two reasons : (i ) so
that the summary statistic for species is average LMA
value – LMA being the variable of interest, rather than
log(LMA), and the average being a statistic that is simpler to
interpret than the back-transformed average or ‘geometric
mean’ ; (ii ) the distribution of repeated measurements of
LMA within a species is not usually long-tailed or strongly
skewed, and so the sample mean is usually a good summary
statistic. The averaging on the untransformed scale slightly
complicates estimation of the measurement error variance
s2dXi

for log(LMA) – equation (33) needs to used.
Table 7 gives a summary of the repeated measurements

of LMA for each species, for one of the sites sampled by
Wright et al., (2001). The term s2dXi

is estimated using equa-
tion (33), with a correction factor of (log10e)

2, because
log10(LMA) is used in further analyses in Wright et al. (2001)
rather than loge(LMA).

The average measurement error variance s2dX , can be

calculated using equation (31), from the values of ni and s2dXi
in Table 7. The estimated value is 0.00014. This is small
compared to the sample variance of the log(LMA) values for
the 18 species means, s2=0.0034.

For all species, the sample mean and measurement error
variance are similar to the values they would otherwise be if
the repeated measurements were log-transformed before
averaging. However, this may not always be the case.

An alternative method of measurement error estimation
would be to estimate the terms s2dXi

by resampling. For each
species, the repeated measurements could be resampled
with replacement, the sample mean reestimated for each
resampled dataset, and the variance of the log-transformed
means across the resampled datasets could be used to esti-
mate s2dXi

.
For the other three sites and other variables measured

in Wright et al. (2001), we similarly found that measure-
ment error variance was small compared to sample vari-
ance (usually <3%, but 10% in one case). Measurement
error was larger for log(Amass) than for log(LMA), and so
SMA slopes of log(Amass) versus log(LMA) were slightly
flatter when accounting for measurement error (the
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most substantial reduction being from a slope of 1.24 to
1.15).

XVI. APPENDIX D. CALCULATIONS FOR
MULTI-SAMPLE TESTS

In this appendix, we describe calculation formulae that can
be used to conduct tests for comparing the lines estimated
from several independent samples (Section VI). First we will
define some terms that are used in the calculation formulae
below.

We will assume there are g groups, and that the ith
group consists of ni pairs of observations (xi1, yi1),
(xi2, yi2), . . . , (xini , yini ), and that the total sample size is
N=

Pg
i=1 ni . We will use standard definitions of the sample

mean, variance, covariance, and correlation coefficient of
the X and Y variables in each group:

!xxi=
1

ni

Xni

j=1

xij !yyi=
1

ni

Xni

j=1

yij (34)

s2x, i=
1

nix1

Xni

j=1

(xijx!xxi )
2 s2y, i=

1

nix1

Xni

j=1

(yijx!yyi )
2 (35)

sxy, i=
1

nix1

Xni

j=1

(xijx!xxi )(yijx!yyi ) (36)

ri=
sxy, i
sx, i sy, i

: (37)

We will also define sf,i
2 (b), srf,i (b) and sr,i

2 (b), the sample var-
iances and covariances of fitted axis and residual scores from
a line of slope b, for the ith group. The residual axis from a
line of slope b can be defined as YxbX, so the sample vari-
ance of residual scores is

s2r, i (b)=s2y, ix2bsxy, i+b2s2x, i: (38)

This should be multiplied by the factor nix1
nix2 when b is esti-

mated from the sample data (Sprent, 1969), although this
will make negligible difference in large samples. For MA, the
fitted axis is bY+X, and for SMA the fitted axis is Y+bX, so

s2f , i (b)=
b2s2y, i+2bsxy, i+s2x, i for MA

s2y, i+2bsxy, i+b2s2x, i for SMA

(

(39)

srf , i (b)=
sxy, i+bs2y, ixbs2x, ixb2sxy, i for MA

s2y, ixb2s2x, i for SMA

(

(40)

and as previously, these terms are multiplied by the factor
nix1
nix2 if b is estimated from the data. (In passing, note that the
MA or SMA slope for the ith group is the value b̂i that
satisfies srf , i (b̂i )=0, i.e. the value that ensures residual and
axis scores are uncorrelated.)

(1) Common slope test

To conduct a test for common slope, first the common slope
must be estimated. A maximum likelihood estimate for the
common slope is the value b̂com satisfying the equation
(Warton & Weber, 2002)

0=

Pg
i=1 ni

1
s2
r, i
( b̂com)

x 1
s2
f , i
( b̂com)

! "
s2rf , i ( b̂com) for MA

Pg
i=1 ni

1
s2
r, i
( b̂com)

+ 1
s2
f , i
( b̂com)

! "
s2rf , i ( b̂com) for SMA

8
>><

>>:
:

(41)

This equation can be solved iteratively, given an initial es-
timate (such as that suggested by Krzanowski, 1984, below).
In iteration, the current estimate of b̂com is used to calculate
s2r, i ( b̂com) and s2f , i ( b̂com), then these values are plugged into
the above equation, which is solved for the new estimate of
b̂com (Warton & Weber, 2002).

To test if there is a common slope, a (Bartlett-corrected)
likelihood ratio statistic (Warton & Weber, 2002) is

x
Xg

i=1

(nix2:5) log 1xr2rf , i ( b̂com)
$ %

! x2gx1: (42)

In the context of estimating common principal components,
Krzanowski (1984) suggested that instead of estimating the
common slope iteratively by maximum likelihood ( b̂com), it
could be found in a single step by pooling sums of squares :

~bbcom=
1

2sxy, P
s2y, Pxs2x, P+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2y, Pxs2x, P)

2+4s2xy, P

q$ %
for MA

sign(sxy, P)
sy, P
sx, P

for SMA

8
<

:

(43)

Table 7. Data on repeated measurements of leaf mass per
area (LMA, in kg mx2) for measurement error variance
calculation. Data are for the 18 species sampled at West Head
by Wright et al. (2001)

Species ni LMAi s2LMAi
s2dLMAi

Acacia floribunda 8 0.10 0.00057 0.00125
Astrotricha floccosa 8 0.08 0.00015 0.00054
Allocasuarina sp. 7 0.15 0.00014 0.00017
Correa reflexa 7 0.06 0.00009 0.00057
Dodonaea triquetra 7 0.10 0.00012 0.00033
Eucalyptus paniculata 7 0.13 0.00133 0.00225
Eucalyptus umbra 7 0.22 0.00417 0.00238
Lasiopetalum ferrugineum 6 0.11 0.00015 0.00039
Leptospermum polygalifolium 8 0.08 0.00018 0.00068
Lomatia silaifolia 6 0.13 0.00159 0.00302
Macrozamia communis 7 0.28 0.00025 0.00009
Persoonia linearis 6 0.16 0.00123 0.00145
Pomaderris ferruginea 8 0.08 0.00025 0.00085
Pultenaea daphnoides 9 0.10 0.00014 0.00029
Pultenaea flexilis 7 0.09 0.00022 0.00077
Synoum glandulosum 6 0.09 0.00037 0.00145
Syncarpia glomulifera 6 0.16 0.00022 0.00027
Xylomelum pyriforme 8 0.17 0.00066 0.00054

For repeated measurements of LMA for the ith species, ni is the
sample size, LMAi is the sample mean, s2LMAi

the sample variance,
s2dLMAi

is the estimated measurement error variance, calculated as
described in the text. Note that ‘repeated measurements ’ in this
context are measurements on different individuals.
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where

s2x, P=
Xg

i=1

(nix1)s2x, i sxy, P=
Xg

i=1

(nix1)sxy, i

s2y, P=
Xg

i=1

(nix1)s2y, i:

(44)

Note, however, that a test statistic using this pooled esti-
mator will not have a chi-square distribution when residual
variances are different in different groups, as demonstrated
in simulations (see Table 11).

An alternative test proposed by Harvey & Mace (1982)
and others is to use an F test analogous to that in the linear
regression case. A measure analogous to sums of squares
for a line of slope b fitted to the ith group is

SS(b, i)=(nix2)s2r, i (b)=k(b) (45)

where k(b) is a correction factor so that residual scores are
measured on an appropriate scale (mathematically, so that
the Jacobian matrix of the transformation to residual and
axis scores has determinant 1) :

k(b)= 1+b2 for MA
2b for SMA

&
: (46)

In the major axis case, SS(b, i ) is the minimum possible sum
of squares of distances from the points to a line of slope b, for
the ith group. In the standardised major axis case, SS(b, i )
is the analogous term calculated on standardised data then
back-transformed, or equivalently, it is the sum of triangular
areas discussed by Teissier (1948).

An F test is then constructed to compare fitting a common
slope (~bbcom, estimated by pooling sums of squares) to fitting
each group with its own slope ( b̂i ) :

(Nx2g)
Pg

i=1 SS (~bbcom, i)xSS ( b̂i , i)
$ %

(gx1)
Pg

i=1 SS ( b̂i , i)
: (47)

While in the linear regression case a test statistic of this form
is distributed as Fgx1,Nx2g, simulations have shown that this
distribution is generally a poor approximation when com-
paring the slopes of MA or SMA lines (see Table 11).

(2 ) CI for common slope

If it is believed that there is a common slope, to test if the
common slope is equal to b, a (Bartlett-corrected) likelihood
ratio test statistic is

Xg

i=1

(nix2:5) log
s2f , i (b)s

2
r, i (b)=k(b)

2

s2f , i ( b̂com)s
2
r, i ( b̂com)=k( b̂com)

2

 !

! x21: (48)

k(b) has been defined in equation (46). A 100(1xp)% con-
fidence interval for the common slope can be estimated by
finding the range of values for b for which this test statistic is
non-significant at level p. Use of this approach to con-
structing confidence intervals was suggested by Warton &
Weber (2002).

Solving for the confidence interval is best done using an
optimisation routine.

(3 ) Test for common elevation

Two statistics will be described here for testing for common
elevation – an F statistic and a Wald statistic. The Wald
statistic makes less restrictive assumptions and was shown in
simulations (Appendix E) to maintain nominal significance
levels in a range of scenarios we consider to be realistic.
Hence the Wald statistic is recommended for general use.

The F statistic described here is the test statistic for an
analysis of variance of residual scores Yxb̂comX , but with
denominator degrees of freedom of Nxgx1 not Nxg. As
previously, the term b̂com is the maximum likelihood esti-
mator of the common slope, although ~bbcom could be used
instead, as suggested by Harvey & Mace (1982). An F sta-
tistic of this form can be used because the elevation is the
sample mean of the residual scores, âi=!yyixb̂com!xxi . If
~aacom= 1

N

Pg
i=1 niâi , then the F statistic can be written as

(Nxgx1)
Pg

i=1 ni (âix~aacom)
2

(gx1)
Pg

i=1 (nix2)s2r, i ( b̂com)
: (49)

This test statistic does not account for the possibility that the
X means might not be equal, or that the residual variances
(estimated by s2r, i ( b̂com)) might not all be equal. The esti-
mated variance of âi is

s2r, i (b̂com)

ni
+!xx2i s

2
b̂com

(50)

but an analysis of variance of residual scores ignores the
second part of this expression, and replaces s2r, i ( b̂com) with a
pooled estimate. This is only reasonable if the true mean of
the X variable (mx,i) is the same for all groups, and if all
residual variances are the same.

If the mx,i can not be assumed to be equal, then a
Wald statistic is more appropriate, as described in the fol-
lowing. First we will define the vector containing the g
sample elevations as Â=[â1 . . . , âg]

0, the g-vector of
sample means of the X variable as XX=[!xx1 . . . !xxg]

0, and the
g-vector of residual mean standard errors as
s(R)= sr, 1( b̂com)=

ffiffiffiffi
n1

p
. . . sr, g ( b̂com)=

ffiffiffiffi
ng

p #0
h

. Then the covari-
ance matrix of the g sample elevations is approximately

s2(Â )=diag(s2(R))+XX
0
s2
b̂com

(51)

where diag(v) indicates a diagonal matrix with the vector v
along the diagonal, and where the variance of the estimator
of the common slope (s2

b̂com
) is a function of the variances of

the one-sample estimates of slope (which are calculated
using the formula in Table 4) :

sx2
b̂com

=
Xg

i=1

sx2
b̂ i

: (52)

This expression for the variance of the common slope esti-
mator can be derived by calculating the Fisher information
(Kendall & Stuart, 1973, Section 18.16) of the common
slope estimator.

If the null hypothesis is written in the form H0 : LÂ=0
for some matrix L, then the Wald statistic for testing H0 is

(LÂ)0(Ls2(Â)L0)x1(LÂ) !approx
x2gx1: (53)
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The chi-squared approximation applies if Â is normally
distributed (Kendall & Stuart, 1969, Section 15.10), which is
true in large samples (Robertson, 1974, for example) and a
reasonable approximation in small samples, as suggested by
simulations (Table 13).

When testing for common elevations, a suitable choice
of L is L=[1(gx1)r1|xI(gx1)r(gx1)], where 1arb is the arb
matrix in which every element is 1, and Iara is the ara
identity matrix.

If an estimate of common elevation is desired, this can be
calculated as

âcom=
11, g s2(Â)
' (x1

Â

11, g s2(Â)
' (x1

1g, 1
: (54)

This is the mean elevation, accounting for unequal and
correlated error of the different sample elevations.

Another statistic that could be used to test for common
elevation is a likelihood ratio statistic, although estimation
would not be straightforward in general, because there
would need to be iteration between three different steps :
estimating common slope, common elevation, and variance
terms.

(4 ) Test for no shift along the fitted axis

To test for no shift along a common fitted axis, the F test
analogous to that used for testing for common elevation is

(Nxgx1)
Pg

i=1 ni (m̂f , ix!mmf )
2

(gx1)
Pg

i=1 (nix2)s2f , i (b̂com)
(55)

where m̂f , i is the mean fitted axis score,

m̂f , i=
b̂com!yyi+!xxi for MA

!yyi+b̂com!xxi for SMA

&
(56)

and !mmf= 1
N

Pg
i=1 ni m̂f , i is an estimate of the common mean

fitted axis score.
A Wald statistic for testing for no shift along a common

fitted axis has a similar form as when testing for common
elevation. The covariance matrix of M̂f=[m̂f , 1 . . . , m̂f , g]

0 is

s2(M̂f )=
diag(s2(F))+YY

0
s2
b̂com

for MA

diag(s2(F))+XX0s2
b̂com

for SMA

8
<

: (57)

where s2(F)=[sf,1
2 (b̂ com)/n1 … sf,g

2 (b̂ com)/ng]k, and as pre-
viously X and Y are g-vectors of sample means of the X and
Y variables, respectively. The Wald statistic for testing
H0 :LMf=0 is

(LM̂f )
0(Ls2(M̂f )L

0)x1(LM̂f ) !approx
x2gx1: (58)

As previously, the Wald statistic is recommended in favour
of the F statistic, because its distribution is not sensitive to
unequal variances along different fitted axes, nor to shifts
along the residual axis (i.e. differences in location along the
X or Y axes that are not due to shifts along the fitted axis).

A test for equal average fitted axis mean is equivalent to a
test for equal elevation of the (standardised) minor axis. For
the SMA case, this is obvious, since the fitted axis mean is in

fact the elevation of the standardised minor axis. In the MA
case, the fitted axis mean is proportional to the Y-intercept
of the minor axis, and hence the equivalence holds in this
case also.

Analogous to the common elevation case, the common
mean fitted axis score can be estimated as

m̂f , com=
11, g s2(M̂f )
$ %x1

M̂f

11, g s2(M̂f )
$ %x1

1g, 1

: (59)

XVII. APPENDIX E. SIMULATIONS

This appendix presents results of simulations that check the
coverage probability of confidence intervals that have been
proposed, and checks the Type I error of test statistics that
have been proposed. In all cases, 95% confidence and the
5% significance level will be used.

As a general rule, the values of parameters used in simu-
lations were in the range we consider to arise commonly in
practice, although for sample size, values were chosen to be
on the smaller side of this range. In all simulations, the
variances of both variables were chosen to be equal, without
loss of generality. Methods of inference are scale indepen-
dent for SMA, and it can reasonably be assumed that
properties of inferential methods do not change with scale
for MA.

In all simulations, coverage probabilities and Type I error
were estimated from 10000 datasets. This means that an
exact confidence interval will usually (95% of the time) have
an estimated coverage probability in the range (94.6%,
95.4%), and an exact test will usually (95% of the time) have
an observed Type I error rate in the range (4.6%, 5.4%).

The sign of the slope was assumed known to be positive a
priori in all simulations, given that the sign of the slope is
almost always known in practice. Hence coverage prob-
ability was estimated for the portions of (primary or sec-
ondary) confidence interval that were positive, and the
(standardised) minor axis was used in calculations in the rare
instances when it had positive slope, rather than using a
(standardised) major axis with negative slope.

Three distributions were considered in simulations – bi-
variate normal with variances 1, a 9:1 mixture of bivariate
normal distributions with variances 1 and 4, and a 9:1
mixture with variances 1 and 9. Note that the last of these
distributions is particularly long-tailed – its kurtosis coef-
ficient is larger than that for the double exponential, for
example. For conciseness, results are often presented for the
bivariate normal distribution only, and it can be noted that
the effect of using a different distribution was negligible.

(1) Confidence intervals for slope

Simulations were conducted to measure the coverage
probability of confidence intervals for slopes of the major
axis (bMA) and the standardised major axis (bSMA), using the
exact method described in this paper (Pitman, 1939;
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Creasy, 1957; Jolicoeur & Mosimann, 1968), using the tNx2
distribution with variances taken from Table 4, and using a
tNx2 distribution but with variance estimates taken from
Isobe et al. (1990). The exact method gives exact confidence
intervals if sufficient information is known a priori to dis-
tinguish the (standardised) major and minor axes, and if
residuals are normally distributed. Other methods are
asymptotic, i.e. they approach exactness as sample size
increases.

Results demonstrate that although the exact method is
only exact for normally distributed residuals, it remained
very close to nominal levels for the non-normal distributions
considered here, even for small samples (Table 8). This jus-
tifies recommendation of this method in practice. It is also
apparent from Table 8 that although the tNx2 method is not
exact, it still works very well. In these simulations, coverage
probabilities for the tNx2 method were practically indis-
tinguishable from those for the exact method, except for
slightly liberal confidence intervals for bMA in small samples.
The method due to Isobe et al. (1990) performed reasonably
except when N=10, and coverage probabilities were not
as close to nominal levels as for alternative methods, so this
approach is not recommended.

(2 ) Confidence intervals for the slope when the
line is fitted through the origin

Some simulations were conducted to demonstrate that when
the line is fitted through the origin, the major axis (bMA) and
the standardised major axis (bSMA) slopes and confidence
intervals can be calculated by modifying existing for-
mulae – setting all sample means to 0, and replacing Nx1
with Nx2, in the formulae of Table 4. As previously, the
exact method allows exact inference for normally distributed
residuals, and close to exact inference for non-normal re-
siduals (Table 9). This remained true even when the data
were not actually centered at zero, as long as the true line
passed through the origin.

(3 ) Confidence intervals for elevation

Simulations were conducted to measure the coverage
probability of confidence intervals for elevation (a) in small
samples, when calculated using the method described in this
paper or the method of Legendre & Legendre (1998).
Confidence intervals were considered for the major axis
elevation and standardised major axis elevation.

Data were generated from the bivariate normal distri-
bution with sample size 20, correlation 0.5, variances 1. The
location of the centroid was varied over four points (which
make up a square) : (0, 0), (0, 10), (10, 10), (10, 0). This al-
lowed consideration of the effects of shifts along the X-axis
and Y-axis separately. The respective true elevation in the
four simulations was 0, 10, 0, x10.

Results in Table 10 illustrate that the confidence intervals
for elevation proposed in this paper can work well. By con-
trast, the method proposed by Legendre & Legendre (1998)
worked well for mx=10 but was particularly poor when
mx=0. See Section V.3 for an explanation of the behaviour
of the method due to Legendre & Legendre (1998).

(4 ) Type I error of tests for common slope

Some simulations were conducted to measure the Type I
error of different tests for common slope. Simulations were
conducted for two groups of data generated as bivariate
normal with variances 1, total sample size 40, sampling ei-
ther balanced or unbalanced, and correlation either the
same for the two groups or different. These simulations
compared three test statistics :

(i ) An F statistic, analogous to what is done in linear re-
gression to compare several slopes. Results demonstrated
that this statistic does not have an F distribution – the criti-
cal value at the 0.05 significance level was exceeded as much
as 30% of the time (Table 11).

(ii ) The likelihood ratio test described in Warton &
Weber (2002). Results here (Table 11) and elsewhere
(Warton &Weber, 2002; Warton, in press) demonstrate that
this statistic maintains close to exact significance levels at the
0.05 level under a broad range of conditions, for samples of
size 20 and indeed smaller.

(iii ) The likelihood ratio test, but with common slope es-
timated by pooled sums of squares (as suggested by
Krzanowski, 1984) instead of by maximum likelihood esti-
mation as in Flury (1984) or Warton &Weber (2002). Type I
error remained close to nominal levels for this method only

Table 8. Simulations estimating the coverage probabilities
(%) of 95% confidence intervals for the slope of the major axis
(bMA) and standardised major axis (bSMA), when using the
exact limits, a tNx2 approximation, or the variance estimates
of Isobe et al. (1990), for data with different sample size (N),
correlation (r), and from different distributions. Coverage
probability was estimated from 10 000 datasets

r N

bMA bSMA

exact tNx2 Isobe exact tNx2 Isobe

(a) Bivariate normal
0.5 10 94.9 93.0 86.7 94.9 94.7 88.0

30 95.3 94.3 92.1 95.3 95.4 92.6
90 94.9 94.8 93.9 94.9 95.0 93.9

0.75 10 94.8 93.8 86.9 94.8 94.6 87.3
30 95.2 95.1 92.2 95.2 95.2 92.1
90 94.9 95.1 94.0 94.9 95.1 93.9

(b) 9 :1 mixture, variances 1 and 4
0.5 10 95.1 93.0 86.5 95.1 94.9 87.2

30 95.1 93.9 91.7 95.1 95.1 91.5
90 94.7 94.9 94.0 94.7 95.0 93.2

0.75 10 94.8 93.9 86.6 94.8 94.5 86.6
30 94.7 94.6 92.0 94.7 94.7 91.5
90 95.0 95.0 93.7 95.0 95.1 93.3

(c) 9 :1 mixture, variances 1 and 9
0.5 10 94.8 92.1 85.0 94.8 94.7 84.9

30 94.8 93.7 91.9 94.8 94.8 90.4
90 94.9 94.5 95.0 94.9 95.0 93.1

0.75 10 94.3 93.4 85.9 94.3 94.4 85.3
30 94.8 94.4 91.9 94.8 94.7 90.7
90 95.2 95.1 94.2 95.2 95.1 93.4
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when correlation was the same across groups. In other in-
stances, Type I error was inflated (Table 11). The inflation
arose because the common slope was not estimated using
the maximum likelihood estimator, so the null likelihood
function was underestimated and the test statistic was over-
estimated.

(5 ) Confidence intervals for common slope

Simulations have been conducted to measure the coverage
probability of confidence intervals for the common slope of
the major axis (bMA) and the standardised major axis (bSMA)
in small samples. Details on how these confidence intervals
are calculated can be found in Appendix D. The same set of
simulation conditions was used as for Table 11.

Confidence intervals for a common SMA slope are close
to exact for all simulations, and a reasonable approximation
for a common MA slope (Table 12).

(6 ) Type I error of tests for common elevation

Simulations have been conducted to measure the Type I
error of F and Wald statistics to test for common elevation.
These tests are described in more detail in Appendix D.

Simulations were conducted for data generated as bi-
variate normal with variances 1, for two groups with a total
sample size of 40. Simulations considered different relative
locations of the centroids of the two samples, different
sampling designs, and different correlations. In all cases,
the null hypothesis is true (the true elevations of both
groups are equal). All the test statistics are invariant under
any location change applied to all groups, so the centroid
of the first group is fixed at the origin without loss of
generality.

From simulation results it is clear that the Wald statistic
should be used in practice (Table 13). This statistic can
maintain close to nominal levels for the chi-squared distri-
bution irrespective of differences between groups in sample
size, residual variances, or means of the X variables. By
contrast, the F statistic based on ANCOVA is sensitive
to unequal X means, and to unequal residual variances in
unbalanced designs.

Simulations including resampling of these test statistics
have also been conducted (results not shown). If any of the
above test statistics were resampled by bootstrapping re-
siduals within each group (as described in Appendix F), then
the resampled statistic maintained close to nominal signifi-
cance levels. On the other hand, if residuals are permuted
between groups, the F statistic can depart substantially from
nominal levels if residual variances are not equal across
groups, analogous to the situation described for analysis of
variance by Boik (1987).

(7) Confidence intervals for method-of-moments
slope

Simulations were conducted to measure the coverage
probability of confidence intervals for slopes of the method-
of-moments major axis (bMM,MA) and the method-
of-moments standardised major axis (bMM,SMA). The meth-
ods of confidence interval construction considered were :
ignoring measurement error and using exact methods

Table 9. Simulations estimating the coverage probabilities
(%) of 95% confidence intervals for the slope of the major axis
(bMA) and standardised major axis (bSMA) when fitted through
the origin. Exact limits were used. Data were generated with
different sample size (N), correlation (r), and centroid (mx, my).
Coverage probability was estimated from 10 000 bivariate
normal datasets

r N (mx, my) :

bMA bSMA

(0, 0) (10, 10) (0, 0) (10, 10)

0.5 10 95.1 95.0 95.2 95.2
30 95.0 94.7 95.0 94.7
90 94.9 95.3 94.9 95.3

0.75 10 95.1 95.5 95.1 95.5
30 95.2 95.5 95.2 95.5
90 94.7 94.9 94.7 94.9

Table 10. Simulations estimating the coverage probabilities
(%) of 95% confidence intervals for the elevation of the major
axis (aMA) and standardised major axis (aSMA), using the tNx2
distribution and the method due to Legendre & Legendre
(1998, pp. 512–513, denoted LL below). Simulations varied
the location of the centroid (mx, my). Coverage probability was
estimated from 10 000 bivariate normal datasets

(mx, my)

aMA aSMA

tNx2 LL tNx2 LL

(0, 0) 95.3 21.1 95.1 14.4
(0, 10) 95.4 21.7 95.4 15.1
(10, 10) 94.8 94.8 94.9 94.8
(10, 0) 95.0 94.8 95.2 94.8

Table 11. Simulations estimating the Type I error (%) at the
0.05 significance level, of tests for common major axis slope
(bMA) and common standardised major axis slope (bSMA).
The test statistics are an F-test analogous to the linear
regression case (F ), and a maximum likelihood test where the
common slope is either estimated using maximum likelihood
( b̂com) or pooled sums of squares ( ~bbcom). Simulations varied
the sample sizes of the two groups (n1, n2) and the correlation
between Y and X for the two groups (r1, r2). Type I error was
estimated from 10 000 bivariate normal datasets

(n1, n2) (r1, r2)

bMA bSMA

F b̂com ~bbcom F b̂com ~bbcom

(20, 20) (0.75, 0.75) 6.9 4.5 5.3 3.5 4.9 5.5
(0.6, 0.9) 10.8 4.7 13.7 3.5 4.7 9.5

(10, 30) (0.75, 0.75) 17.2 4.3 5.1 10.9 4.7 5.1
(0.6, 0.9) 32.6 5.0 10.8 18.4 5.3 9.2
(0.9, 0.6) 11.6 4.5 11.7 5.1 4.9 7.5
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(Pitman, 1939; Creasy, 1957; Jolicoeur & Mosimann,
1968), correcting variance terms for measurement error and
using exact methods, using the tNx2 distribution but
with variance estimates taken from Akritas & Bershady
(1996). For the simulation results of Table 14, bivariate
normal data were used, and measurement errors were
also normally distributed. Sample size (N) was 10, 30 or
90, and measurement error variance was estimated from
2, 4 or 8 repeated measures of each observation (nrep).
Measurement error variance of the Y variable (s2

dY
) was

either 0.4 or 0.2.
Note that the repeated measures were averaged before

line-fitting, which reduces the size of the measurement error
variance as a factor of the number of repeated measures. For
example, with s2

dy
=0:4 and nrep=4, the variance of aver-

aged repeated measures is 0:4
4 =0:1. Because the variance of

Y is 1, this means that the variance of averaged repeated
measures is 10% of the size of the variance of Y. However,
the variance of average repeated measures can be large
compared to the variance of residual scores (sr

2=1xr when
variances are 1), which takes the values 0.5 and 0.25 in si-
mulations.

Measurement error was introduced into Y only, because if
measurement error is not corrected for, the most extreme
situation in which measurement error biases slope is when
measurement error is in one variable only.

Results can be summarised as follows:
(i ) Exact methods ignoring measurement error were

poor at larger sample sizes and larger measurement errors,
because of bias. However, this method often led to more
accurate confidence intervals than the competing methods
in small samples, and had reasonably accurate coverage
probability when measurement error was not large.

(ii ) There was substantial undercoverage for methods
that correct for measurement error whenever sample size
and number of repeated measures were small (N=10 and
nrep=2). This suggests that to use these methods, measure-
ment error variance needs to be estimated reasonably well
(i.e. from more than 30 observations in total, including
repeated measures).

(iii ) All methods performed better when the measure-
ment error was smaller compared to error from the line

(i.e. compared to residual variance) – hence they performed
better when s2

dy
was smaller, nrep larger, or r smaller.

(iv) The exact method adjusted for measurement error
usually had good coverage probabilities when variance of
measurement error was less than 20% of the variance of
residual scores. However, in other situations it performed
poorly, and it was quite slow to converge to a coverage
probability of 95% with increasing sample size.

(v) The only method that led to consistently good
coverage probabilities in moderate-to-large samples was the
method due to Akritas & Bershady (1996). However, this
method was usually too liberal for N=10.

As a tentative rule, measurement error could be ignored if
the variance of measurement error was less than 20% of the
variance of residual scores. Under this rule, the ‘exact ’
confidence intervals ignoring measurement error performed
reasonably well in simulations. However, the rule should be
used with caution : the estimated slope without correcting
for measurement error is biased (in our simulations, the
bias was up to 10%), and confidence intervals ignoring
measurement error are not consistent (i.e. in very large
samples, the confidence intervals will not contain the true
slope, due to bias).

If measurement error needs to be accounted for, the
method due to Akritas & Bershady (1996) can be used if
sample size is not small. Unfortunately, none of the methods
considered here is reliable if sample size is small (NB10),

Table 12. Simulations estimating the coverage probability
(%) of 95% confidence intervals for the common major axis
slope (bMA) and common standardised major axis slope
(bSMA). In simulations, bivariate normal data were generated,
varying the sample sizes of the two groups (n1, n2) and the
correlation between Y and X for the two groups (r1, r2).
Coverage probability was estimated from 10 000 bivariate
normal datasets

(n1, n2) (r1, r2) bMA bSMA

(20, 20) (0.75, 0.75) 94.8 95.2
(0.6, 0.9) 94.7 95.0

(10, 30) (0.75, 0.75) 94.0 94.5
(0.6, 0.9) 95.0 95.2
(0.9, 0.6) 93.3 94.6

Table 13. Simulations estimating the Type I error (at the
5% level) of F-tests and Wald tests (F and W, respectively) for
common major axis elevation (aMA) and for common
standardised major axis elevation (aSMA). Simulations varied
the sampling design (n1, n2), correlation (r1, r2), and the
location of the centroid of the second sample (mx,2, my,2). The
location of the first centroid was always (0, 0). Type I error
was estimated from 10 000 bivariate normal datasets

r1, r2 (mx,2, my,2)

aMA aSMA

F W F W

(a) (n1, n2)=(20, 20)
0.75, 0.75 (0, 0) 5.5 5.3 5.4 5.5

(0.5, 0.5) 6.5 5.3 5.9 5.3
(1, 1) 10.7 5.6 8.0 5.2

0.6, 0.9 (0, 0) 5.3 5.3 5.3 5.5
(0.5, 0.5) 5.7 5.2 5.5 5.3
(1, 1) 8.5 5.8 7.3 5.8

(b) (n1, n2)=(10, 30)
0.75, 0.75 (0, 0) 6.0 6.2 5.8 6.1

(0.5, 0.5) 6.2 6.2 5.5 6.3
(1, 1) 9.8 6.7 8.0 6.5

0.6, 0.9 (0, 0) 1.1 5.6 1.0 5.7
(0.5, 0.5) 1.4 5.7 1.1 5.4
(1, 1) 3.3 6.3 2.1 5.8

0.9, 0.6 (0, 0) 15.3 6.2 15.3 6.3
(0.5, 0.5) 15.5 6.6 15.3 6.7
(1, 1) 17.8 6.3 17.1 6.4
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so the use of resampling methods is suggested in these in-
stances.

XVIII. APPENDIX F. RESAMPLING-BASED
PROCEDURES

This appendix outlines the algorithms for resampling-
based inference for the procedures described in the main
text. The two techniques of resampling that will be con-
sidered are permutation testing under the reduced model
(Freedman & Lane, 1983) and bootstrapping data to reflect
H0 (Hall & Wilson, 1991). The approach due to Freedman
& Lane (1983) was originally proposed for the regression
context, but it can be applied to residual and axis scores,
since linear transformation to these variables essentially
reduces MA or SMA to a regression problem. The approach
due to Freedman & Lane (1983) has been found to maintain
nominal significance levels more closely than other available
permutation algorithms when residual variances are con-
stant (Anderson & Robinson, 2001).

Bootstrapping and permutation testing arise from quite
different models and philosophies (Westfall & Young, 1993,
pp. 169–177). Permutation tests arise from studies in
which randomisation has been used in assigning treatments
to subjects (e.g. in randomly choosing mice to receive
an injection of a hormone treatment), whereas boot-
strapping arises from approximating the sampling distribu-
tion(s) of the population(s) being studied. Of these two, the
latter is closer to the underlying model in allometry – there
is usually no treatment applied by randomisation, and in-
stead samples from different populations are being com-
pared.

If resampling in allometry, we recommend bootstrapping
in preference to permutation tests, although acknowledging
that in practice the performance of the two methods will be
almost identical. The only situation in which one might ex-
pect qualitatively different results is in multi-sample tests
when the residual variances are unequal – in this situation,
the bootstrapping algorithms are still applicable, but a dif-
ferent permutation testing algorithm is necessary for valid
inferences.

(1) One-sample test of slope

The one-sample test that the slope equals some value b re-
duces to a test for correlation of the appropriate residual
plot, (bY+X, YxbX ) for the major axis, and
(Y+bX, YxbX ) for the standardised major axis. A resam-
pling-based test would involve constructing this plot and
resampling as appropriate. The following algorithm is pro-
posed:

(1) Construct the residual plot.
(2) Calculate the test statistic (rrf(b)

2, in the notation of
Table 4).

(3) Set count to 0 (or 1 for permutation testing).
(4) For bootstrap testing, calculate residual and axis

scores using the estimated slope b̂ : residual scores are
Yxb̂X, and axis scores are b̂Y+X for MA, Y+b̂X for SMA.

Table 14. Simulations estimating the coverage probabilities
(%) of 95% confidence intervals for the slope of the method-
of-moments major axis (bMM,MA) and method-of-moments
standardised major axis (bMM,SMA), when there are repeated
measurements of observations with measurement error (in Y
only). Confidence intervals used the exact method ignoring
measurement error (exact) or modified to account for
measurement error (exactadj), or used the method of Akritas &
Bershady (1996, labelled AB). Simulations varied sample size
(N), correlation (r), the variance of normally distributed
measurement errors (s2

dy
), and the number of repeated

measures (nrep) of each subject. Repeated measures were
averaged for each subject, and used to estimate measurement
error variance. Coverage probability was estimated from
10 000 bivariate normal datasets

r N nrep

bMM,MA bMM,SMA

exact exactadj AB exact exactadj AB

(a) s2
dy
=0:4

0.5 10 2 94.2 87.3 86.2 89.9 87.3 88.6
4 94.8 91.6 85.9 89.1 91.6 87.5
8 94.9 93.5 86.5 88.6 93.5 87.8

0.5 30 2 91.8 90.2 90.7 92.5 90.2 92.0
4 93.8 92.8 91.2 92.7 92.8 91.5
8 94.9 94.1 91.8 92.9 94.1 92.3

0.5 90 2 84.5 91.2 93.6 87.0 91.2 93.8
4 92.2 92.9 93.5 92.8 92.9 93.4
8 94.2 94.4 93.8 94.3 94.4 94.0

0.75 10 2 93.7 80.8 86.2 89.0 80.8 88.3
4 94.5 88.8 87.0 88.7 88.8 87.7
8 95.2 92.5 87.3 88.3 92.5 87.4

0.75 30 2 89.8 86.2 91.1 89.7 86.2 91.5
4 93.4 91.8 92.0 92.3 91.8 92.1
8 94.7 93.6 92.4 92.7 93.6 92.3

0.75 90 2 78.2 88.0 93.7 80.9 88.0 93.6
4 90.3 91.8 94.0 90.8 91.8 94.0
8 93.7 93.7 94.0 93.5 93.7 93.9

(b) s2
dy
=0:2

0.5 10 2 94.6 88.6 87.0 88.2 88.6 87.3
4 95.0 92.3 87.3 88.3 92.3 87.5
8 94.9 94.0 87.1 87.4 94.0 87.0

0.5 30 2 94.3 92.1 92.2 93.0 92.1 92.4
4 94.6 93.3 92.1 92.5 93.3 92.2
8 94.9 94.1 92.1 92.4 94.1 92.0

0.5 90 2 90.4 91.9 93.9 91.2 91.9 93.9
4 93.5 93.2 93.9 93.4 93.2 94.0
8 94.7 94.5 94.2 94.3 94.5 94.3

0.75 10 2 94.5 88.3 86.7 88.4 88.3 87.0
4 94.8 92.3 87.4 88.7 92.3 87.4
8 94.7 93.5 86.5 86.9 93.5 86.6

0.75 30 2 93.2 91.1 92.1 92.3 91.1 92.0
4 94.5 93.1 91.6 92.5 93.1 91.8
8 94.7 94.0 91.5 92.0 94.0 91.6

0.75 90 2 89.9 92.2 94.0 91.0 92.2 94.1
4 93.7 93.4 93.8 93.3 93.4 93.8
8 94.5 94.1 93.9 93.8 94.1 93.8
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For permutation testing, consider the residual and axis
scores calculated using b as the slope instead of using b̂ .
These will be used in step 5.

(5) For iter steps (or iterx1 for permutation testing), re-
peat the following:

(a) Resample the residual scores (referred to as r*).
For permutation testing under the reduced model, the re-
sidual scores are randomly reassigned to axis scores, and for
the bootstrap, residual scores are resampled with replace-
ment and assigned to axis scores.

(b) Recalculate the test statistic : rr*f (b)
2 for permu-

tation testing or rr*f (b̂)
2 for bootstrapping.

(c) If r2r*f >rrf (b)
2, add 1 to count.

(6) Calculate the P-value as count
iter .

Note that for the bootstrapped datasets, the residual and
axis scores are calculated using b̂ rather than b. This is
done to preserve the properties of the sample data in the
resampled data – in particular, the variances and covar-
iances of the residual and axis scores will resemble those of
the sample data.

(2 ) Test for common slope

In the case of testing for a common slope, some alterations
to the above algorithm are required. Obviously, the test
statistic to be used will be different – the likelihood ratio test
statistic given in Appendix D will be used in steps 2 and steps
5b–c. Alterations to the method of resampling are also re-
quired.

For resampling (steps 4 and 5a), residuals are resampled
rather than residual scores (although this is not essential if
bootstrapping), and a back-transformation to the original
axes is required. The fitted axis scores (F) and residuals (R)
are :

(F ,R)=
(b̂comY+X , Yxâixb̂comX ) for MA

(Y+b̂comX , Yxâixb̂comX ) for SMA

(

(60)

which means that the back-transformation to the original
variables, X and Y, is

(X ,Y )=

1

1+b̂2
com

(Fxb̂comR+âi b̂com),
1

1+b̂2
com

(b̂comF+Rxâi )

 !
for MA:

1

2b̂com

(FxRxâi ),
1

2
(F+R+âi )

 !

for SMA

8
>>>>><

>>>>>:

(61)

Because the test statistics are location and scale invariant,
the back-transformations can be replaced by

(X 0,Y 0)= (Fxb̂comR, b̂comF+R) for MA
(FxR, F+R) for SMA

&
: (62)

In the case of common slope testing by permuting residuals
under the reduced model, steps 4 and 5a are :

(4) Using the lines fitted with a common slope, construct
the residuals, and axis scores.

(5a) Randomly reassign the residuals to axis scores. Back-
transform to the original axes.
When testing for a common slope by bootstrapping, these
steps become:

(4) For the lines fitted with different slopes (i.e. using b̂i
and ai calculated using data from the ith group only), con-
struct the residuals and axis scores.

(5a) Resample residuals with replacement within each
group, assign each to an axis score. Back-transform using
the transformation based on the common slope estimator
b̂com (not using the b̂i ).
When bootstrapping, the common slope b̂com is used in
back-transformation rather than b̂i so that the resampled
data reflect H0 (Hall & Wilson, 1991), i.e. so that the re-
sampled data are generated from distributions with a com-
mon slope. Also, resampling of residuals is done within each
group rather than across groups to ensure that any differ-
ences between groups in variances of residuals are pre-
served.

(3 ) Test for common elevation

In the case of tests for common elevation, a resampling al-
gorithm can be used that is similar to the one used for
common slope testing, with only three differences :

(i ) The test statistic is changed to the Wald statistic for
equal elevation.

(ii ) In step 4, residuals should be calculated using the
estimated common elevation (âcom) for permutation testing,
but for bootstrapping they should be calculated using the
sample elevations for the different groups (âi ).

(iii ) In step 5b, the estimated common elevation (âcom)
should be used in back-transformation, to ensures that all
groups of resampled data have common elevation.

(4 ) Test for no shift along the fitted axis

In the case of tests for no shift along the fitted axis, there are
several changes to the resampling algorithm for common
slope testing :

(i ) The test statistic is changed to the Wald statistic for no
shift along the fitted axis.

(ii ) The fitted axis scores are resampled rather than the
residuals.

(iii ) In step 4, axis scores should be calculated using the
estimated common mean axis score (m̂f , com) for permutation
testing, but for bootstrapping axis scores should be calcu-
lated using the mean axis scores for the different groups
(m̂f , i ).

(iv) In step 5b, the estimated common mean axis
score (m̂f , com) should be used in back-transformation, to
ensures that all groups of resampled data have common
elevation.

(v) Residual scores may be used rather than residuals,
both for permutation testing and bootstrapping.
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