
College of the Holy Cross, Fall Semester 2017
MATH 243 – Mathematical Structures, section 2

Solutions for Exam 3 – December 7

I. (25) Give the statement and proof of “Fermat’s Little Theorem.”

Solution: The statement is that if p is prime in Z and gcd(a, p) = 1. Then ap−1 ≡ 1 mod p.

Proof: Since gcd(a, p) = 1, the class [a] ∈ Z/pZ has a multiplicative inverse. We claim
this implies that the mapping f : Z/pZ → Z/pZ defined by f([x]) = [a][x] is injective
and surjective. Injectivivity follows because if f([x]) = [a][x] = [a][x′] = f([x′]), then we
can multiply both sides of this equation by [a]−1 to obtain [x] = [x′]. This shows that
f is injective. Then, since Z/pZ is finite, f must be surjective as well. Now f([0]) =
[0]. Hence f must map the nonzero classes in (Z/pZ)× to themselves it follows that the
[a], [2a], . . . , [(p− 1)a] are the same as [1], [2], . . . , [p− 1], just in a different order. But then
it follows that

(p− 1)! mod p = (p− 1) · (p− 2) · · · 2 · 1 mod p

≡ (p− 1)a · (p− 2)a · · · · 2a · a mod p

= ap−1 · (p− 1)! mod p.

Since all of the factors b in (p − 1)! satisfy gcd(b, p) = 1, (p − 1)! also has a multiplicative
inverse mod p, so this congruence implies

1 ≡ ap−1 mod p,

which is what we wanted to show.

II. (20) An RSA public key encryption system has public key m = 551, e = 11. “Crack the
code” by determining the private key information: p, q, d.

Solution: We see m = 551 = 19 · 29, and both factors are prime, so p = 19 and q = 29 (or
vice versa – either is OK). Then recall that the decryption exponent must satisfy

e · d ≡ 1 mod (p− 1)(q − 1),

So we need to determine a multiplicative inverse of e = 11 mod (p−1)(q−1) = 18 ·28 = 504.
We do this by the Euclidean algorithm:

504 = 45 · 11 + 9

11 = 1 · 9 + 2

9 = 4 · 2 + 1.
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So applying the Extended Euclidean Algorithm

1 0

0 1

45 1 − 45

1 − 1 46

4 5 − 229

So the multiplicative inverse is −229 ≡ 275 mod 504. We would use the decryption exponent
d = 275 to decrypt intercepted messages.

III. Let f : A→ B be a mapping.

(A) (10) Show that if U1, U2 are subsets of B, then f−1(U1 ∩ U2) = f−1(U1) ∩ f−1(U2).

Solution: ⊆: Let x ∈ f−1(U1 ∩U2). Then f(x) ∈ U1 ∩U2, so f(x) ∈ U1 and f(x) ∈ U2.
By definition this means that x ∈ f−1(U1) and x ∈ f−1(U2). Hence x ∈ f−1(U1) ∩
f−1(U2). This shows the ⊆ inclusion.

⊇: Now assume x ∈ f−1(U1) ∩ f−1(U2). This implies x ∈ f−1(U1) and x ∈ f−1(U2),
so by definition, f(x) ∈ U1 and f(x) ∈ U2. But that shows f(x) ∈ U1 ∩ U2, so
x ∈ f−1(U1 ∩ U2). Hence we get the ⊇ inclusion as well.

(B) (10) If f is injective, and T1, T2 are subsets of A, show that f(T1) ∩ f(T2) 6= ∅ implies
T1 ∩ T2 6= ∅.

Solution: If y ∈ f(T1) ∩ f(T2), then y = f(x1) for some x1 ∈ T1 and y = f(x2) for
some x2 ∈ T2. But that implies f(x1) = f(x2) and f is assumed injective, so x1 = x2.
This shows x1 = x2 ∈ T1 ∩ T2, so T1 ∩ T2 6= ∅.

IV. (15) Let R be the relation on R\{0} defined by a R b ⇔ a
b
∈ Q. See below.1 Is R an

equivalence relation? Prove your assertion.

Solution: Yes this is an equivalence relation:

(1) R is reflexive since a
a

= 1 ∈ Q for all a ∈ R \ {0}. So a R a is true for all a 6= 0.

(2) R is symmetric since a R b says a
b

= m
n
∈ Q implies b

a
= n

m
∈ Q (note m 6= 0 follows

because a, b 6= 0). Hence a R b implies b R a.

(3) R is transitive since if a R b and b R c, then a
b

= m
n

and b
c

= p
q

with m,n, p, q in Z.
But then

a

c
=

a

b
· b
c

=
m

n
· p
q

=
mp

nq

so a R c as well.

1Here Q = {m/n : m,n ∈ Z, n 6= 0} is the set of rational numbers.
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V.

(A) (10) Show that N is not bounded above in the real numbers.

Solution: (by contradiction): Assume that N is bounded above. Then Axiom C for
the real number system implies that N has a least upper bound, call it b. But then
by definition of a least upper bound, if we consider b− 1 < b, there must be a natural
number n ∈ N with b − 1 < n ≤ b. But that implies (b − 1) + 1 = b < n + 1, and
n+ 1 ∈ N, but n+ 1 > b. Hence b cannot be an upper bound for N. This contradiction
shows N has no upper bound in R.

(B) (10) Use part (A) to show that for all real numbers ε > 0, there exist n ∈ N such that∣∣∣1− (1 + (−1)n√
n

)
∣∣∣ < ε

Solution: If we simplify we get∣∣∣∣1− (
1 +

(−1)n√
n

)∣∣∣∣ =
1√
n

We will have
1√
n
< ε⇐ n >

1

ε2

Since N is not bounded in R, no matter how small ε is, and consequently, no matter
how big 1

ε2
is, there are still n > 1

ε2
. This is equivalent to 1√

n
< ε.
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