College of the Holy Cross, Fall Semester 2017
MATH 243 — Mathematical Structures, section 2
Solutions for Exam 3 — December 7

I. (25) Give the statement and proof of “Fermat’s Little Theorem.”
Solution: The statement is that if p is prime in Z and ged(a, p) = 1. Then a?~! = 1 mod p.

Proof: Since ged(a,p) = 1, the class [a] € Z/pZ has a multiplicative inverse. We claim
this implies that the mapping f : Z/pZ — 7Z/pZ defined by f([z]) = [a][x] is injective
and surjective. Injectivivity follows because if f([z]) = [a][z] = [a][z/] = f([z/]), then we
can multiply both sides of this equation by [a]™! to obtain [x] = [#/]. This shows that
f is injective. Then, since Z/pZ is finite, f must be surjective as well. Now f([0]) =
[0]. Hence f must map the nonzero classes in (Z/pZ)* to themselves it follows that the
la], [2a],...,[(p — 1)a] are the same as [1],[2],...,[p — 1], just in a different order. But then
it follows that

(p—D)!modp=(p—1)-(p—2)---2-1mod p
=(p—1)a-(p—2)a----2a-amodp
=a’' (p—1) mod p.

Since all of the factors b in (p — 1)! satisfy ged(b,p) = 1, (p — 1)! also has a multiplicative
inverse mod p, so this congruence implies

1 =a’! mod p,
which is what we wanted to show.

II. (20) An RSA public key encryption system has public key m = 551,e = 11. “Crack the
code” by determining the private key information: p,q,d.

Solution: We see m = 551 = 19 - 29, and both factors are prime, so p = 19 and ¢ = 29 (or
vice versa — either is OK). Then recall that the decryption exponent must satisfy

e-d=1mod (p—1)(qg—1),

So we need to determine a multiplicative inverse of e = 11 mod (p—1)(¢—1) = 18-28 = 504.
We do this by the Euclidean algorithm:

504 =45-11+9
11=1-9+2
9=4-2+1.



So applying the Extended Euclidean Algorithm

1 0
0 1
45 1 —45
1 —1 46
4 5 —229

So the multiplicative inverse is —229 = 275 mod 504. We would use the decryption exponent
d = 275 to decrypt intercepted messages.

III. Let f : A — B be a mapping.
(A) (10) Show that if Uy, Uy are subsets of B, then f~Y(U; NUy) = f~HU) N f~HUs).

Solution: C: Let x € f~Y(U;NUy). Then f(x) € UyNUsy, so f(z) € Uy and f(z) € Us.
By definition this means that x € f~1(U;) and x € f~1(U,). Hence z € f~1(U;) N
f~YU,). This shows the C inclusion.

D: Now assume z € f~1(U;) N f~1(Uy). This implies z € f~1(U;) and z € f~1(Us),
so by definition, f(z) € U; and f(x) € U,. But that shows f(z) € Uy N Uy, so
xr € f~YU, NU,). Hence we get the D inclusion as well.

(B) (10) If f is injective, and Ty, T are subsets of A, show that f(71) N f(Ts) # () implies
Ty NTy # 0.

Solution: If y € f(Ty) N f(Ty), then y = f(z1) for some z; € Ty and y = f(z3) for
some x9 € Ty. But that implies f(z1) = f(x2) and f is assumed injective, so 1 = 3.
This shows 1 = x5 € T) N Th, so Th N Ty # .

IV. (15) Let R be the relation on R\{0} defined by a R b < ¢ € Q. See below.! Is R an

equivalence relation? Prove your assertion.
Solution: Yes this is an equivalence relation:
(1) R is reflexive since 2 =1 € Q for all a € R\ {0}. So a R a is true for all a # 0.

(2) R is symmetric since @ R b says ¢ = 2 € Q implies 2 = 2 € Q (note m # 0 follows
because a,b # 0). Hence a R b implies b R a.

(3) R is transitive since if a R b and b R ¢, then $ = 2 and % = £ with m, n,p,q in Z.
But then
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so a R ¢ as well.

"Here Q = {m/n : m,n € Z,n # 0} is the set of rational numbers.
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V.
(A) (10) Show that N is not bounded above in the real numbers.

Solution: (by contradiction): Assume that N is bounded above. Then Axiom C for
the real number system implies that N has a least upper bound, call it b. But then
by definition of a least upper bound, if we consider b — 1 < b, there must be a natural
number n € N with b — 1 < n < b. But that implies (b —1) +1 =0 < n+ 1, and
n+1 €N, but n+1 > b. Hence b cannot be an upper bound for N. This contradiction
shows N has no upper bound in R.

(B) (10) Use part (A) to show that for all real numbers € > 0, there exist n € N such that

-+ 5| <=

Solution: If we simplify we get
(=" 1
1—11 = —
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Since N is not bounded in R, no matter how small ¢ is, and consequently, no matter
how big E% is, there are still n > E% This is equivalent to \/Lﬁ <e.

We will have



