$\begin{array}{c} \hbox{College of the Holy Cross, Fall Semester 2017} \\ \hbox{MATH 243-Mathematical Structures, section 2} \\ \hbox{Exam 2-November 2} \end{array}$

me:
me:

Instructions Please write your answers in the spaces provided on the following pages, and show work on the test itself. For possible partial credit, even if you cannot completely solve a problem, include definitions of terms involved, partial results you can do, etc. Use the back of the preceding page if you need more space for scratch work.

Please do not write in the space below

Problem	Points/Poss
I	/ 20
II	/ 35
III	/ 15
IV	/ 15
V	/ 15
Total	/100

I. Let $f: \mathbb{Z}/29\mathbb{Z} \to \mathbb{Z}/29\mathbb{Z}$ be the mapping defined by f([x]) = [x] + [12].

(A) (10) Show that f is injective.

(B) (10) Is f surjective? Why or why not?

II.

(A) (20) Give a precise statement of the Division Algorithm in \mathbb{Z} , and prove *both* the Existence and Uniqueness parts.

(B) (15) Use the Euclidean algorithm to find the integer $d = \gcd(585, 108)$ and express d in the form $d = m \cdot 585 + n \cdot 108$ for some integers m, n.

III. (10) Let a, b, c be integers. Show that if gcd(a, b) = 1 and a|(bc), then a|c.

IV. (15) Find a solution x of the congruence $31x \equiv 6 \mod 64$ with $0 \le x < 64$.

V. (15) Construct the multiplication table for $(\mathbb{Z}/12\mathbb{Z})^{\times}$.