Math 131 - section 01 - Precalculus Diagnostic Quiz Answers August 31, 2007

Circle the correct answer. Show your work. Please turn over for problems 4,5,6.

- 1. Simplify: $\sqrt{15} \left(\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} \right)$
 - A. $2\frac{\sqrt{15}}{\sqrt{8}}$ B. $\frac{\sqrt{15}}{\sqrt{3}+\sqrt{5}}$ C. 1 D. $\sqrt{3}+\sqrt{5}$ E. $2\sqrt{3}$.
 - Solutions: The answer is D. There are several ways to do this, but all rely on the fact that $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ for all positive real a, b.
 - Method 1: Multiply through:

$$\sqrt{15} \left(\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} \right) = \frac{\sqrt{15}}{\sqrt{3}} + \frac{\sqrt{15}}{\sqrt{5}}$$
$$= \frac{\sqrt{5}\sqrt{3}}{\sqrt{3}} + \frac{\sqrt{5}\sqrt{3}}{\sqrt{5}}$$
$$= \sqrt{5} + \sqrt{3}$$

• Method 2: Put the terms on the inside the parentheses over a common denominator:

$$\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{15}}$$

Then multiplying by $\sqrt{15}$ gives $\sqrt{5} + \sqrt{3}$ again.

- 2. Simplify: $\frac{12x}{3x-6} \cdot \frac{x^2-4}{2x+4}$
 - A. $\frac{x^2 + 12x 4}{5x 2}$ B. 2x C. $-\frac{4}{3}(x 1)$ D. $\frac{2x(x 2)}{x + 2}$ E. $\frac{12x^3 48x}{6x^2 12}$

• Solution: The answer is B. Recall the difference of squares factorization: $x^2 - a^2 =$ (x+a)(x-a). Here, $x^2-4=(x+2)(x-2)$, so

$$\frac{12x}{3x-6} \cdot \frac{x^2-4}{2x+4} = \frac{12x(x+2)(x-2)}{3(x-2) \cdot 2(x+2)}$$

Cancelling common factors top and bottom yields 2x.

3. Simplify:
$$\left(u^{-5}v^2\right)^3 \left(\frac{v^2}{u}\right)^{-1}$$

- A. $u^{-16}v^8$ B. $u^{-14}v^4$ C. $u^{-9}v^3$ D. $(uv)^{-7}$ E. $u^{-4}v^2$

• Solution: The answer is B. Recall the rules for exponents:

$$a^b \cdot a^c = a^{b+c}, \qquad (a^b)^c = a^{b \cdot c}, \qquad a^{-1} = \frac{1}{a}.$$

Then

$$(u^{-5}v^2)^3 \left(\frac{v^2}{u}\right)^{-1} = u^{-15}v^6 \cdot uv^{-2} = u^{-14}v^4.$$

- 4. If $f(x) = 5x^2 11$, what is f(a-2)?
 - Solution: Substitute a-2 for the x in the formula to yield

$$f(a-2) = 5(a-2)^2 - 11 = 5(a^2 - 4a + 4) - 11 = 5a^2 - 20a + 9.$$

- 5. Find all values of x satisfying 2(x-2) > 5.
 - Solution: All real x > 9/2 (since x 2 > 5/2, so x > 5/2 + 2 = 9/2).
- 6. Solve for x: $2x^2 x 6 = 0$ (find all solutions).
 - Solution: This quadratic factors as (2x+3)(x-2)=0, so 2x+3=0 or x-2=0. Hence x = -3/2 or x = 2. The equation can also be solved by the quadratic formula:

$$x = \frac{1 \pm \sqrt{1 + 49}}{4} = 2, -3/2.$$