College of the Holy Cross, Spring 2008 Math 132, Solutions for Midterm Exam 1 (All Sections) Wednesday, February 20

I. (10) State the definition of the definite integral $\int_a^b f(x) \ dx$.

Solution: If f(x) is continuous on [a,b] and $\Delta x = \frac{b-a}{n}$, then the definite integral is the limit of the Riemann sums

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \ \Delta x$$

for all choices of $x_i^* \in [x_{i-1}, x_i]$.

II. Compute the derivatives of each of the following functions defined by integrals.

A. (5)
$$f(x) = \int_{1}^{x} e^{t^2} dt$$

Solution: By the first part of the Fundamental Theorem of Calculus,

$$f'(x) = e^{x^2}.$$

B. (5)
$$g(x) = \int_{x^2}^4 \frac{\cos(t)}{t^2} dt$$

Solution: Reversing the limits of integration,

$$g(x) = -\int_{4}^{x^2} \frac{\cos(t)}{t^2} dt.$$

Then by the first part of the Fundamental Theorem and the Chain Rule,

$$g'(x) = -\frac{\cos(x^2)}{x^4} \cdot 2x = -\frac{2\cos(x^2)}{x^3}.$$

III. The following graph (made up of straight line segments) shows y = f(t) for $0 \le t \le 4$.

Given: f(1) = 2, f(2) = -2, f(3) = -1, and f(4) = 0, The function F is defined by $F(x) = \int_0^x f(t) dt$.

A. (5) Determine the values F(x) for x = 0, 1, 2, 3, 4 and enter them in the following table.

Solution: By computing areas of trapezoids, we have:

x	0	1	2	3	4
F(x)	0	3/2	3/2	0	-1/2

B. (5) Does F(x) have any critical points? If so, say where. If not say why not.

Solution: By the first part of the Fundamental Theorem, F'(x) = f(x) = 0 when x = 3/2 and x = 4. (Since x = 4 is an endpoint of the interval, we will also accept just x = 3/2.)

C. (5) Over which interval(s) is F(x) concave down?

Solution: F(x) is concave down on intervals where F''(x) < 0, or F'(x) = f(x) is decreasing. This occurs for 1 < x < 2 here.

IV.

A. (5) Integrate with a suitable *u*-substitution: $\int_0^1 (4x^3 + 1)^{3/5} x^2 dx.$

Solution: Note that the x^2 outside the power is du up to a constant for $u = 4x^3 + 1$. So do this substitution where $du = 12x^2 dx$. So

$$\int_{0}^{1} (4x^{3} + 1)^{3/5} x^{2} dx = \frac{1}{12} \int_{u=1}^{u=5} u^{3/5} du$$

$$= \frac{5}{96} u^{8/5} \Big|_{u=1}^{u=5}$$

$$= \frac{5}{96} \left(5^{8/5} - 1 \right)$$

2

B. (5) Integrate with a suitable *u*-substitution: $\int \frac{x \sin(3x^2)}{\cos(3x^2) + 1} dx.$

Solution: Let $u = \cos(3x^2) + 1$. Then $du = -\sin(3x^2)(6x) dx$ by the Chain Rule. So

$$\int \frac{x \sin(3x^2)}{\cos(3x^2) + 1} dx = -\frac{1}{6} \int \frac{du}{u}$$
$$= -\frac{1}{6} \ln|u| + C$$
$$= -\frac{1}{6} \ln|\cos(3x^2) + 1| + C.$$

C. (7.5) Integrate by parts: $\int x^2 \sin(5x) dx$

Solution: We let $u = x^2$, $dv = \sin(5x) dx$, so du = 2x dx and $v = -\frac{1}{5}\cos(5x)$. Applying the parts formula,

$$\int x^2 \sin(5x) \ dx = -\frac{x^2}{5} \cos(5x) + \frac{2}{5} \int x \cos(5x) \ dx.$$

Now do parts again on the remaining integral with u = x, $dv = \cos(5x) dx$, so du = dx and $v = \frac{1}{5}\sin(5x)$. This gives:

$$\int x^2 \sin(5x) \ dx = -\frac{x^2}{5} \cos(5x) + \frac{2}{5} \left(\frac{x}{5} \sin(5x) - \frac{1}{5} \int \sin(5x) \ dx \right)$$
$$= -\frac{x^2}{5} \cos(5x) + \frac{2x}{25} \sin(5x) + \frac{2}{125} \cos(5x) + C$$

D. (7.5) Integrate with the partial fraction method: $\int \frac{3x^2+1}{x^2+5x+6} dx$

Solution: Since the degree of the top is equal to the degree of the bottom, we divide first: $3x^2 + 1 = 3(x^2 + 5x + 6) - 15x - 17$ so

$$\int \frac{3x^2 + 1}{x^2 + 5x + 6} \ dx = \int 3 - \frac{15x + 17}{x^2 + 5x + 6} \ dx.$$

Now $x^2 + 5x + 6 = (x + 2)(x + 3)$ so the partial fractions are

$$\frac{15x+17}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3}.$$

Clearing denominators,

$$15x + 17 = A(x+3) + B(x+2),$$

so with x = -2 we see A = -13 and with x = -3 we see B = 28. Then

$$\int 3 - \frac{15x + 17}{x^2 + 5x + 6} \, dx = \int 3 - \left(\frac{-13}{x + 2} + \frac{28}{x + 3}\right) \, dx = 3x + 13\ln|x + 2| - 28\ln|x + 3| + C.$$

E. (10) Integrate via trigonometric substitution: $\int \sqrt{36-x^2} \ dx$

Solution: From the form of the integrand, we use $x = 6 \sin \theta$, so $dx = 6 \cos \theta d\theta$ and the integral becomes

$$\int \sqrt{36 - x^2} \, dx = \int \sqrt{36(1 - \sin^2 \theta)} \, 6\cos \theta \, d\theta = 36 \int \cos^2 \theta \, d\theta.$$

To integrate this, we use the half-angle formula:

$$36 \int \cos^2 \theta \, d\theta = 36 \int \frac{1}{2} (1 + \cos(2\theta)) \, d\theta = 18\theta + 9\sin(2\theta) + C$$

Now we convert back to expressions in the original variable x. From the substitution $x = 6 \sin \theta$, we have $\theta = \sin^{-1}\left(\frac{x}{6}\right)$ and $\sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2\frac{x}{6} \frac{\sqrt{36-x^2}}{6} = \frac{x\sqrt{36-x^2}}{18}$. The integral equals

$$18\sin^{-1}\left(\frac{x}{6}\right) + \frac{x\sqrt{36 - x^2}}{2} + C.$$

(Note that you can check your work using #39 in the table!)

V. Integrate using any applicable method or the table. If you do use the table, give the number of the entry you are using.

A. (10)
$$\int \tan x \sec^4 x \ dx.$$

Solution: Method 1: Since the derivative of $u = \sec x$ is $du = \sec x \tan x$, the form here is

$$\int \sec^3 x (\sec x \tan x) \, dx = \int u^3 \, du = \frac{1}{4} u^4 + C = \frac{1}{4} \sec^4 x + C.$$

Method 2: Since the derivative of $\tan x$ is $\sec^2 x$, this one can also be done by splitting off two powers of $\sec x$ and converting the other $\sec^2 x$ to powers of $\tan x$:

$$\int \tan x \sec^4 x \, dx = \int \tan x (\sec^2 x) \sec^2 x \, dx$$

$$= \int \tan x (1 + \tan^2 x) \sec^2 x \, dx$$

$$= \int \tan x \sec^2 x \, dx + \int \tan^3 x \sec^2 x \, dx$$

$$= \int u \, du + \int u^3 \, du \qquad \text{(for } u = \tan x\text{)}$$

$$= \frac{u^2}{2} + \frac{u^4}{4} + C$$

$$= \frac{\tan^2 x}{2} + \frac{\tan^4 x}{4} + C.$$

This is equivalent to the answer above via the trig identity $1 + \tan^2 x = \sec^2 x$.

Method 3: A third way to do this one is to convert everything to sines and cosines. The integral obtained that way can be done by a u-substitution letting $u = \cos x$, $du = -\sin x \, dx$:

$$\int \frac{\sin x}{\cos^5 x} \, dx = -\int u^{-5} \, du = \frac{u^{-4}}{4} + C = \frac{1}{4\cos^4 x} + C.$$

This is also equivalent to the answer in Method 1 above since $\sec x = \frac{1}{\cos x}$

B.
$$(10) \int \frac{\sqrt{9 + e^{2x}}}{e^x} dx$$

Solution: Substitute $u = e^x$, then $du = e^x dx$, so $dx = \frac{du}{e^x} = \frac{du}{u}$. Making these substitutions yields

$$\int \frac{\sqrt{9+u^2}}{u^2} \ du,$$

which is # 24 in the table with a = 3. We apply the table entry:

$$= -\frac{\sqrt{9+u^2}}{u} + \ln\left|u + \sqrt{9+u^2}\right| + C = -\frac{\sqrt{9+e^{2x}}}{e^x} + \ln\left|e^x + \sqrt{9+e^{2x}}\right| + C.$$

Note that this is not # 23 because of the "extra" u in the denominator from dx.

C. (10)
$$\int \frac{dx}{x^2 + 8x + 17}.$$

Solution: Complete the square in the denominator: $x^2 + 8x + 17 = (x + 4)^2 + 1$. Therefore, the substitution u = x + 4, du = dx takes this to the basic form

$$\int \frac{1}{u^2 + 1} du = \tan^{-1}(u) + C = \tan^{-1}(x + 4) + C.$$