MATH 132 -- Lab Day 2

Solutions

March 22, 2005

A)  The catenary-shaped cables

>    fcat:=x->(exp(a*x)+exp(-a*x))/2 - 1;

fcat := proc (x) options operator, arrow; 1/2*exp(a*x)+1/2*exp(-a*x)-1 end proc

>    eq:=fcat(640)=143;

eq := 1/2*exp(640*a)+1/2*exp(-640*a)-1 = 143

>    subs(a=2,fcat(x));

1/2*exp(2*x)+1/2*exp(-2*x)-1

>    aval:=fsolve(eq,a=1);

aval := .8848356912e-2

>    plot(subs(a=aval,fcat(x)),x=-640..640);

[Maple Plot]

>    fcats:=subs(a=aval,fcat);

fcats := fcat

>    evalf(Int(sqrt(1+diff(fcats,x)^2),x=-640..640));

1280.

B)  Parabolic cables.  First, we find a value for   k    in the parabolic form   y = k x^2

     to make   y = 143 (meters above low point), when x = 640:  

>    kcold:=evalf(143/(640)^2);

kcold := .3491210938e-3

>    plot(kcold*x^2,x=-640..640);

[Maple Plot]

C)  The parabolic cable length

>    cold:=evalf(Int(sqrt(1+diff(kcold*x^2,x)^2),x=-640..640));

cold := 1321.409032

D) Check using the Pythagorean theorem:

>    evalf(2*sqrt(640^2+143^2));

1311.562427

This is reasonable, since we expect the length of the curved parabolic cables to

be close to, but slightly larger than, the length of the straight line segments.

E)  The ``hot'' cables.  The rationale for the following computations is this:  When hot,

      the cables will still be parabolic in shape.  So we again take the equation   y = k x^2

      but with a different   k   from before.   Note:  this means we are shifting the

       cables up from their actual position, to place the low point at  y = 0 again.

      We know the length of the hot cables is  1.0005 times the cold length, so

      we set up the equation:

>    eqn:=int(sqrt(1+diff(k*x^2,x)^2),x=-640..640) = 1.0005*cold;

eqn := -1/4*1/Pi^(1/2)/(k^2)^(1/2)*(-3276800*Pi^(1/2)*k^2+(-18*ln(2)-1-2*ln(5)-ln(k^2))*Pi^(1/2)-409600*Pi^(1/2)*k^2*(-1/(409600*k^2)-8)-3276800*Pi^(1/2)*k^2*(1+1/(1638400*k^2))^(1/2)-2*Pi^(1/2)*ln(1/2...
eqn := -1/4*1/Pi^(1/2)/(k^2)^(1/2)*(-3276800*Pi^(1/2)*k^2+(-18*ln(2)-1-2*ln(5)-ln(k^2))*Pi^(1/2)-409600*Pi^(1/2)*k^2*(-1/(409600*k^2)-8)-3276800*Pi^(1/2)*k^2*(1+1/(1638400*k^2))^(1/2)-2*Pi^(1/2)*ln(1/2...

and solve it to find the value of   k   for the hot cables:

>    khot:=fsolve(eqn,k=kcold);

khot := .3519731010e-3

>    hot:=evalf(Int(sqrt(1+diff(khot*x^2,x)^2),x=-640..640));

hot := 1322.069737

(This checks that we get the correct arc length.)  Now, the ``sag'' for the hot

cables is the vertical distance between the point at the top  (with   x = 640 )  and

the bottom   (x = y = 0):

>    newsag:=khot*640^2;

newsag := 144.1681822

This is just over 1 meter larger than the sag when the cables are cold (143 m).  This is probably

not noticeable for cars traveling over the bridge.