Mathematics 244, section 1 — Linear Algebra
Solutions for Exam 2 — March 23, 2007

I. (15) Let V be a vector space and let S be a finite subset of V' with Span(S) =V. If T
is a linearly independent subset of V', show that |T'| < |S|. (Here |S| denotes the number
of elements in S, and similarly for |T|.)

Solution: Say S = {v1,...,vp} and T = {wy,...,w,} in V, where Span(S) = V. We
will show that if n > m, then T must be linearly dependent. Since Span(S) =V, for
each j, 1 < j < n, there exist scalars a;; such that

(1) Wj = A1V1 + - + Qi Upn.-
Suppose we have scalars ci, ..., ¢, such that
(2) 0 =crwi + cows + ++ + + cpwy,.

Then substituting from the equations (1), we have
0=ci(a11v1 4+ +am1Vm) +c2(@1201+ -+ Am2Vm) + - -+ Cp (@101 + -+ CmnUm)-
Rearranging this equation gives:
0= (a11c1+ - -+ a1nCn)v1 + -+ (@mic1 + -+ - + ApnCn)Vn.
This will be satisfied if

aiici+ -+ acp, =0

Am1C1 + *+ + GpnCn = 0

But this is a homogeneous system of m linear equations in the variables cq, ..., c,.
Since we assume that n > m, there are free variables, hence nontrivial solutions.
This implies that T is linearly dependent if n > m from (2). Hence if T is linearly
independent, then n = |T| < |S| = m.

II. All parts of this question refer to the matrix
1 -2 0 S 2
A=1-2 -1 -1 2s -1
1 3 1 s -1

A) (15) For which value(s) of the scalar s does A satisfy dim Nul(A4) = 27



Solution: We begin by applying row operations Ry — Ry 4+ 2R, R3 — Rz — Ry, and
then R3 — R3 + R> the matrix A.

1 -2 0 s 2
-2 -1 -1 28 —-1| —
1 3 1 s -1

-2 0 s 2
-5 -1 4s 3
5 1 s2—s —3
-2 0 s 2
-5 -1 4s 3
0 0 0 s*2+3s 0

O = OO

From this, we can see that there are always pivots in columns 1 and 2. Moreover, if
52 + 3s # 0, then there is a pivot in column 4 as well. To get dimNul(A4) = 2 (not
3), we need three pivot columns (2 free variables), so the condition is s2 + 3s # 0.
dim Nul(A4) = 2 for all real s other than s =0,s = —3.

B) (10) Say s = 1. Give bases of Col(A) and Nul(A).

Solution: We substitute s = 1 in the last matrix above and continue the reduction to
row-reduced echelon form. The result is:

1 0 25 0 4/5
01 1/5 0 —3/5
00 0 1 0

Thus, a basis for Col(A) is given by columns 1,2/4 of the original matrix A (taking
s =1 of course):

1 —2 1
2], -1],]2
1 3 1

A basis for Nul(A) comes from parametrizing the solutions of Az = 0 with the free
variables x3, x5 as usual:

—2/5 —4/5
~1/5 3/5
1 |,] o
0 0
0 1

ITI. (10) Use Cramer’s Rule to solve the system

3$1 + 2.’E2 =9
—8x1 4+ 3x9 = —12

Solution: We have




and

39
det(—s —12)
= 36/25

3 2
det (—8 3)

IV. Let V = Msy2(R), the vector space of all 2 x 2 matrices with real entries. Let W = R2,

ro =

A) (10) Is T : V — W defined by T(A) = ((?eit((j?))

not?

) a linear mapping? Why or why

Solution: No, T is not a linear mapping. The easiest way to see this is to note that if
we multiply the matrix A by a scalar ¢, then

T(cA) = ( djte(t((c%)z» = (ciz(?eit(%))) '

If ¢ # 1, then this is not the same as ¢T'(A). For instance if A = I and ¢ = 2, we get

T(2I) = (146) £ 9T(T) = (3)

H:{A:(Ccl 2) EV:a—}-b:c-l-d}

is a vector subspace of V.

B) (10) Show that

Solution: The zero matrix (g 8) iIsin H since 0+0=0+0. If A = (Z b)

d
ande(S {z) are in H,thena+b=c+d=0and e+ f =g+ h =0. Then
_fa+e b+ f
A+B_(c+g d—l—h) and

(a+e)+b+fl=(a+d)+(e+f)=(c+d)+(g+h)=(c+g)+ (d+h)

(using commutativity and associativity of addition in R). Hence A+ B € H. Finally,
if A€ Handr € R, then rA = (m rb

re rd) and ra+7rb=r(a+b) = r(c+d) = re+rd.
Therefore rA € H.

C) (5 Extra Credit) Find a basis for H from part B and determine its dimension.



Solution: In the equation a+b—c—d = 0, b, ¢, d are free variables. Hence dim H = 3,

and a basis consists of
-1 1 1 0 1 0
0 0/)’\1 0/)’\0 1/°

V. (True-False) For each true statement, give a short proof. For each false statement, give
a counterexample. (Note: As always, “true” means “true in every case.” Partial credit will
be given for definitions or theorems that apply even if you don’t find a complete solution.)

A) (10) Let A be a 4 x 4 matrix in which Ry + 2R3 = R3 + R4 (R; is row ¢ of the matrix).
Then det(A) = 0.

Solution: This is True. For a proof, we will use the fact that “replacement operations”
R; — R;+cR; do not change the value of the determinant. Hence if we apply the row
operations R; — R, +2R5, and R4 — R4+ R3, we will obtain matrix with two equal
rows (rows 1 and 4). Hence if we apply another operation such as Ry — R4 — Ry, we
obtain a row of zeroes. Expanding the determinant along row 4, we obtain det(A4) = 0.

B) (10) There exist linear mappings T : R? — R? with standard matrices A satisfying
Nul(A) = Col(A).

Solution: This is True. Since the statement says “there exists such a matrix,” it
suffices to produce one. From the equation dimNul(A) + dim Col(A) = 2, we can
see that to get equality, we want both terms = 1. This means that we want a 2 x 2
matrix A whose columns are scalar multiples, and such that Az = 0 for x = both of
its columns. The condition dim Col(A) = 1 means that

a=(5 )
(5 2)()-6)

implies that a®?+cab = 0 and ab+cb? = 0. There are infinitely many different solutions
of these equations. If we take ¢ = —1, for instance, then a = 1,b =1 gives one:

a=(3 0)

Col(A) = Span { (1) } — Nul(A).

for some a, b, c. Then

is such a matrix, with



(There are infinitely many others too.)

C) (10) Let A, B, C be nxn matrices. If det(A*BC®) = 23, then A, B, C are all invertible
matrices.

Solution: This is True. From properties of determinants we know
23 = det(A*BC®) = det(A) det(B)(det(C))".

Since the product is 23 # 0, det(A), det(B), det(C) must all be # 0. This means that
A, B, C are all invertible.



