> with(linalg); -1
 

>
 

MATH 244 -- Linear Algebra 

Problem Set 8 Solutions 

April 13, 2007 

 

Section 4.7 

 

4.   Pis the change of coordinates matrix from    to  , so 

     equation (i) is the correct one. 

 

6.   a) 

 

            

 

           (the i th column is the coordinate vector [f[i]][`𝒟`]) 

 

     b)   

 

 

8.   One way to do questions like this is to relate both bases 

     to the standard basis in  Write   

      = Then 

 

        

 

       

 

      Therefore,   

 

       

 

      and  

 

       

 

14.  The standard basis here is the basis {1, t, t^2}for  We have 

 

      and   

 

       

 

 

       Check:   

 

Section 5.4 

 

2.  By the definition,     (the columns are 

    the coordinate vectors of T(d[i])with respect to ℬ. 

 

 

4.   By the definition,  

 

      

 

     (For instance,  

     which gives the second column of the matrix.  The other columns 

     are similar.) 

 

 

6.   a)   

 

     b)  We have   

          T(p)+T(q)for all  Similarly, for all pand all  

          Therefore, 

          Tis a linear transformation. 

 

     c)  By the definition, 

 

          (For instance, the last column is  

 

          the coordinate vector of   

 

    d)  (added part).  Let ℬ =  

 

         We want   

 

         = `.`(1/Matrix(%id = 139081668), Matrix(%id = 139095144)) = `.`(Matrix(%id = 139043540), Matrix(%id = 139095144)) and `.`(Matrix(%id = 139043540), Matrix(%id = 139095144)) = Matrix(%id = 139043492)
`.`(1/Matrix(%id = 139081668), Matrix(%id = 139095144)) = `.`(Matrix(%id = 139043540), Matrix(%id = 139095144)) and `.`(Matrix(%id = 139043540), Matrix(%id = 139095144)) = Matrix(%id = 139043492)
`.`(1/Matrix(%id = 139081668), Matrix(%id = 139095144)) = `.`(Matrix(%id = 139043540), Matrix(%id = 139095144)) and `.`(Matrix(%id = 139043540), Matrix(%id = 139095144)) = Matrix(%id = 139043492)
 

 

 

8.   If   then   

 

     so  

 

 

 

10.  a)  T(p+q) = Vector[column](%id = 136777484) and Vector[column](%id = 136777484) = Vector[column](%id = 135965388) and Vector[column](%id = 135965388) = Vector[column](%id = 136804588)+Vector[column](%id ... 

           = Similarly,   

 

            Therefore,  T  is a linear mapping. 

 

     b)    By the definition, 

 

             

 

    c)  (added part)   

 

             

 

                          =  

                           

                          = `.`(`.`(1/Matrix(%id = 138025672), Matrix(%id = 140165100)), Matrix(%id = 140129924)) 

 

                          = Matrix(%id = 136411472) 

 

Section 5.1 

 

2.  If A = Matrix(%id = 138524428)then  A+`*`(2, I) = Matrix(%id = 137714328)has rank 1. 

    There are nonzero vectors such as  x = Vector[column](%id = 139923456)such that  

     Therefore  lambda = -2is an  

     eigenvalue of   

 

6.   We have  Therefore, 

     this is an eigenvector of the given matrix with eigenvalue  

     lambda = -2. 

      

8.   A-`*`(3, I) = Matrix(%id = 136338628)has determinant det(A-`*`(3, I)) = -`*`(1, -8)+(-2)(4) and -`*`(1, -8)+(-2)(4) = 0 

 

 

    (expanding by cofactors along row 3).  Hence it has  

    rank ≤ 2, and there are nonzero vectors x  such that  

    (A-`*`(3, I))*x = 0.One such vector is x = Vector[column](%id = 137995364)(found from 

    the row-reduced echelon form of  which is  

 

     

 

20.  Since the dimension of the column space is 1,  

      the matrix is not invertible.  This means that  

      so λ = 0 is an eigenvalue.   

      SpanThese are two linearly independent 

      eigenvectors for the eigenvalue λ = 0.  (Note:  λ = 15 is   

      also an eigenvalue.) 

 

24.  The matrix A = Matrix(%id = 137315456)is one such matrix for any real value of  a. 

        so lambda = 3 is the only eigenvalue. 

 

25.  If λ is an eigenvalue of the invertible matrix A,  then there 

     is a nonzero vector  x  such that  Note that  

     since otherwise we would have a nonzero vector in   

     which is a contradiction to the Invertible Matrix Theorem.  But 

     then from  we can multiply both sides by  1/Ato  

     yield   Then divide through by  λ  to  

     obtain  This equation shows that 1/lambdais an eigenvalue 

     of  

 

26.  If  A^2 = 0and  x is an eigenvector (nonzero) with eigenvalue 

     then  A*x = lambda*ximplies  

     But  A^2is the zero matrix so lambda^2*x = 0(the zero vector), so lambda^2 = 0. 

     Hence λ = 0.   

 

36.  The figure should show T(v) = 3*v(the vector in the same direction 

      as  v  but 3 times as long),  T(u) = -u(the vector in the opposite 

      direction along the line spanned by  and T(w) = T(u+v) and T(u+v) = T(u)+T(v) 

      found by the parallelogram law for vector addition.   

> gaussjord([[-2, 2, 2], [3, -5, 1], [0, 1, -2]]); 1
 

table( [( 1, 2 ) = 0, ( 2, 2 ) = 1, ( 1, 3 ) = -3, ( 1, 1 ) = 1, ( 2, 1 ) = 0, ( 2, 3 ) = -2, ( 3, 1 ) = 0, ( 3, 2 ) = 0, ( 3, 3 ) = 0 ] ) 

> inverse([[1, 2, 1], [0, 1, 2], [-3, -5, 0]]); 1
 

table( [( 1, 2 ) = -5, ( 2, 2 ) = 3, ( 1, 3 ) = 3, ( 1, 1 ) = 10, ( 2, 1 ) = -6, ( 2, 3 ) = -2, ( 3, 1 ) = 3, ( 3, 2 ) = -1, ( 3, 3 ) = 1 ] ) 

> multiply(multiply(inverse([[1, 1, 0, 0], [1, -1, 0, 0], [0, 0, 1, 1], [0, 0, 2, -2]]), [[1, -3, 9, -27], [1, -1, 1, -1], [1, 1, 1, 1], [1, 3, 9, 27]]), [[1, 1, 2, 1], [0, -1, 0, 0], [1, 0, 0, 0], [0, ...
multiply(multiply(inverse([[1, 1, 0, 0], [1, -1, 0, 0], [0, 0, 1, 1], [0, 0, 2, -2]]), [[1, -3, 9, -27], [1, -1, 1, -1], [1, 1, 1, 1], [1, 3, 9, 27]]), [[1, 1, 2, 1], [0, -1, 0, 0], [1, 0, 0, 0], [0, ...
multiply(multiply(inverse([[1, 1, 0, 0], [1, -1, 0, 0], [0, 0, 1, 1], [0, 0, 2, -2]]), [[1, -3, 9, -27], [1, -1, 1, -1], [1, 1, 1, 1], [1, 3, 9, 27]]), [[1, 1, 2, 1], [0, -1, 0, 0], [1, 0, 0, 0], [0, ...
 

table( [( 1, 2 ) = 3, ( 2, 2 ) = 1, ( 1, 3 ) = 2, ( 4, 1 ) = -3/2, ( 2, 4 ) = 39, ( 4, 4 ) = 19, ( 1, 1 ) = 6, ( 2, 1 ) = 4, ( 2, 3 ) = 0, ( 3, 4 ) = -21, ( 4, 3 ) = 1/2, ( 3, 1 ) = 7/2, ( 1, 4 ) = 43... 

>