> with(linalg); -1
 

MATH 244 -- Linear Algebra 

Problem Set 6 Solutions 

March 16, 2007 

 

Section 3.3 

 

4.  By Cramer's Rule, the solution is 

 

     

 

6.  By Cramer's Rule, 

 

 



x[3] = 1/4*det*Matrix(%id = 136042832) and 1/4*det*Matrix(%id = 136042832) = -`*`(4, 1/4) and -`*`(4, 1/4) = -1.
 

 

 

8.  There is a unique solution when   `.`(det, Matrix(%id = 136057916)) 

This is true for all real s.    By Cramer's Rule, the solution is 

 

    

 

20.   The area of the parallelogram is 

 

        

 

24.   The volume is  

 

       LinearAlgebra:-Determinant(`.`(det, Matrix(%id = 139446536))) = 15. 

 

29.   Since the diagonal v[1]-v[2]of the parallelogram with  

       vertices v[1]and v[2]*Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(i, e), at)*the*heads*of*those*vectors 

       divides the parallelogram into two congruent triangles,  

       the area of the triangle is one half of the area of the  

       parallelogram:   

 

       where Ais the matrix with columns  

 

30.   If we translate the triangle to place x[1], y[1]at the origin, 

      the other vertices are  

      Applying the formula from problem 

      29, the area is  

 

               

 

 

      Now on the other hand, if we consider the matrix given 

      in the problem, we can apply row operations to evaluate 

      the determinant as follows -- replace row 2 by row 2 - row 1 

      and replace row 3 by row 3 - row 1: 

 

              

      Expanding the determinant along the third column gives  

 

                           

                       =  

 

      which is the same as the result above, which shows the equality 

              

                      

 

       

32.  a)  There are several such mappings, but the "obvious" one 

           is the  defined by the matrix  A   

           whose columns are the vectors  v[1], Typesetting:-delayDotProduct(v[2], v[3])(in that order). 

           Then T(e[i]) = v[i]for each i = 1, 2, 3. 

 

      b)  By Theorem 10,  where Ais the matrix 

           described in part a. 

 

Section 4.1 

 

2.  a)  Yes:  If then  0. <= xySo the vector c(x, y) = (cx, cy) 

         satisfies  cx(cy) = c^2*xy and 0. <= c^2*xyHence  

 

    b)  If then  

 

4.  The figure should show a line  L  not passing through (0,0), 

    two vectors v, w from the origin to points on  L,  and their 

    vector sum constructed by the parallelogram law 

    for vector addition in  The head of the vector sum is 

    not on the line  L,  so L  is not closed under vector sums. 

 

5.  The set W of all polynomialsis a vector subspace of  

    P[2](real)because:  (a) If we take  

    (b)  If then  

    (c)  If `in`(at^2, W)and then  

 

6.  The set Wof polynomials a+t^2, `in`(a, real)is not  a vector 

    subspace of P[2](real)because 0 W.  (The other two properties 

    also fail, but one is sufficient to say W  is not a subspace.) 

 

8.  The set Wof polynomials `in`(p, P[n](real))such that p(0) = 0 

    is a vector subspace of P[n](real)for each 0 <= n.  (a)  The 

    zero polynomial satisfies z(0) = 0. 

    (b)  If then (p+q)(0) = p(0)+q(0) and p(0)+q(0) = `+`(0, 0) and `+`(0, 0) = 0. 

    (c)  If then cp(0) = cp(0) and cp(0) = `*`(c, 0) and `*`(c, 0) = 0. 

 

20. a)  We need to know that the zero function is continuous, 

         that sums of continuous functions are continuous, and 

         that a constant times a continuous function is continuous. 

    b)  Let The zero function z is in  

         Wbecause If   then  

          

         so Finally, ifthen  

         so   

 

21.  His a vector subspace of the vector space M[2*x2](real)because 

     (a) the zero matrix is in H (take a = b and b = d and d = 0in the general 

          form). 

     (b) If then `and`(A = Matrix(%id = 138225172), B = Matrix(%id = 138307356))for some  

          Hence  

          This matrix is in H  (because of the zero in the second row, 

          first column).   

     (c) If and then  

 

22.  H is a vector subspace of M[2*x4](real)because 

     (a) so   

     (b) If  then   

          This shows   

     (c) If then  

          Hence  

 

31.  If H is a subspace and then by property c in  

     the definition of a subspace, for all scalars  

     Then, by property b in the definition, 

     The set Span*({v, u})consists of all the  

     linear combinations so we have shown  

 

32.  If H, Kare subspaces, they satisfy all three properties in  

      the definition.  Hence Therefore,  

      If then Therefore,  

      But this says   

      Finally, if then so  

      Similarly, so This implies  

      Since `intersect`(H, K)  satisfies the three properties for a subspace 

      it is itself a subspace.   

 

      For the last part, consider  H = Span(e[1])*(the*x-axis) 

      and These are vector subspaces  

      of  The union `union`(H, K)is not a vector subspace, though,  

      because, for instance, but  

 

 

33.   

      a.  Since H, Kare assumed to be subspaces themselves, 

          `in`(0, H)and Hence  

          Next, let Then by definition,  

          x = u+vand where  

          But then commutativity 

          and associativity of vector addition).  Since H, Kare subspaces, 

          `in`(u+w, H)and This shows  

          Finally if then  

          Since H, Kare subspaces,  

          This shows cx = c(u+v) and `in`(c(u+v), H+K) 

      b. This is immediate since H, `subset`(K, H+K)and they satisfy 

          the three parts of the definition of subspaces. 

 

34.  Since given  

      any we have   for 

      some scalars Similarly,  for some 

      scalars But then  

 

           

 

      which is in This shows 

      that Conversely, 

      if then for some scalars 

       

 

          

            =  

 

       This shows  

       Because of the two inclusions, the sets are equal. 

 

Section 4.2 

 

30.   We assume T; -1; proc (V) options operator, arrow; W end procis a linear transformation and 

       consider for some
       (a) so (b)  Let
 

       Then v = T(x) and w = T(y)for some Then 

       because  Tis linear,   

       which shows (c)  Finally, let `in`(v, Im(T)) 

       and Then  v = T(x)for some Hence 

       This shows that  

       All three properties in the definition are satisfied, so  

       Im(T)is a subspace of  

 

31.  a)  Let Then by the definition of T 

 

  

 

   

 

  This shows T  is a linear mapping. 

    

  b)  The kernel of Tis, by definition, the set of all `in`(p, P[2](real)) 

       such that p(0) = p(1) and p(1) = 0.This says pis a quadratic 

       polynomial with roots at t = 0, 1.Any such polynomial 

       is p(t) = c*t(t-1)for some So 

 

                

 

       The image (range) of Tis all of since for any there is  

       a polynomial `in`(p, P[2])with p(0) = aand p(1) = Typesetting:-delayDotProduct(b, In) 

       fact, we can do this with a linear polynomial (the coefficient 

       of  

 

33.  a)  If  then  

 

          T(A+B) = T(Matrix(%id = 136807580)) and T(Matrix(%id = 136807580)) = Matrix(%id = 136807524) 

 

          On the other hand,  

 

           T(A)+T(B) = Matrix(%id = 136388400)+Matrix(%id = 136388456) 

 

                               = Matrix(%id = 138135892) 

 

                               = Matrix(%id = 139656948) 

 

           Therefore, This can  

           also be proved by using properties of transposes.) 

 

           If A = Matrix(%id = 139176420), `in`(r, real)then  

 

            

           Therefore, T  is linear. 

 

     b)  T(A) = Bif  since T(A) = 1/2*T(B) 

since we assumed  

     c)  If  B  is any matrix with then part b shows 

          Conversely, if Ais any matrix  

          then  

          Hence the image of  T  equals the set of such matrices 

     d)  the set of all matrices with 

          a = 0, d = 0, b + c = 0.  These can be written as 

 

           

34.  By the second part of the Fundamental Theorem of Calculus, 

      if  then Hence 

      our mapping can be described as  

      By properties of integrals,  

           T(f+g) = int(f(t)+g(t), t = 0 .. x) and int(f(t)+g(t), t = 0 .. x) = int(f(t), t = 0 .. x)+int(g(t), t = 0 .. x) and int(f(t), t = 0 .. x)+int(g(t), t = 0 .. x) = T(f)+T(g) 

 

      and 

 

           

 

      Hence  T  is a linear mapping. 

 

      The kernel of T  is the set of all functions with T(f) = 0 

      (the zero function).  If we differentiate both sides of this, 

      we get  So the only element of 

      ker(T)is the zero function in this case.   

 

>