MATH 244 -- Linear Algebra 

Problem Set 5 Solutions 

March 2, 2007 

 

Section 3.1 

 

2.  Along the first row: 

 

det(Matrix(%id = 137970068)) = `*`(0, det(Matrix(%id = 137969908)))-5*det(Matrix(%id = 137969956))+det(Matrix(%id = 137970012)) 

                         = 0 - 20 + 22 = 2 

 

Along second column: 

 

det(Matrix(%id = 137796628)) = -5*det(Matrix(%id = 135581916))-3*det(Matrix(%id = 135581964))-4*det(Matrix(%id = 135582012)) 

                         = -20 + 6 + 16 = 2. 

 

10.  The least amount of computation will be needed if we "exploit" 

the zeroes in row 2, then expand the 3 x 3 minor along row 3 

 

det(Matrix(%id = 138080140)) = `+`(`+`(0, 0)-3*det(Matrix(%id = 138078676)), 0) 

 

                               = -3(5(-10 + 12) - 0 + 4(-6 + 4))) = -3 

 

22.  The row operation is  This operation does not 

change the determinant. 

 

24.  The row operation is `⇌`(R[1], R[2])(swap rows 1 and 2). 

This operation changes the determinant by a sign. 

 

34.  so   

 

36.  so  

      since det(E) = 1. 

 

38.   

 

(This also follows from part c of Theorem 3 on page 192 -- one factor 

of k comes from each row.  See problem 32 in the next section for a generalization 

of this fact. ) 

 

Section 3.2/ 

 

6.  Using Theorem 3 on page 192,   

det(Matrix(%id = 140212508)) = det(Matrix(%id = 140212412)) and det(Matrix(%id = 140212412)) = -det(Matrix(%id = 137951792)) and -det(Matrix(%id = 137951792)) = -det(Matrix(%id = 137951624)) and -det(...
det(Matrix(%id = 140212508)) = det(Matrix(%id = 140212412)) and det(Matrix(%id = 140212412)) = -det(Matrix(%id = 137951792)) and -det(Matrix(%id = 137951792)) = -det(Matrix(%id = 137951624)) and -det(...
 

 

 

8.  Doing row operations of type 1:
det(Matrix(%id = 138948568)) = det(Matrix(%id = 138948300)) and det(Matrix(%id = 138948300)) = det(Matrix(%id = 138948104))
 

This last matrix has a whole row of zeroes, so 

det = 0. 

 

16.  By part c of Theorem 3 on page 192, det(Matrix(%id = 137620292)) = 3*det(Matrix(%id = 137620188)) and 3*det(Matrix(%id = 137620188)) = `*`(3, 7) and `*`(3, 7) = 21. 

 

18. By part b of Theorem 3 on page 192, we can 

swap rows 1 and 2, then 2 and 3: 

 

det(Matrix(%id = 139453316)) = -det(Matrix(%id = 139453140)) and -det(Matrix(%id = 139453140)) = `^`(-1, 2)*det(Matrix(%id = 139453036)) and `^`(-1, 2)*det(Matrix(%id = 139453036)) = 7. 

 

20.  By part a of Theorem 3, since row 1 of the given matrix is  

just row 1 plus row 2 of the known matrix, 

 

det(Matrix(%id = 137312416)) = det(Matrix(%id = 137312312)) and det(Matrix(%id = 137312312)) = 7. 

 

22.  Expanding along row 1, for instance 

det(Matrix(%id = 138349300)) = `+`(5, 0)+`*`(-1, 5) and `+`(5, 0)+`*`(-1, 5) = 0.So by Theorem 4,  

the matrix is not invertible. 

 

31.  By the product rule for determinants (Theorem 6),  

 

       

 

We know (and this last equation also implies)  

so  which is what we wanted to show. 

 

32.  If A  is  n x n,  then there is a factor of  r  in  each row 

of A.  Hence if we apply part c of Theorem 3 repeatedly, 

 

     

 

(one factor of r  from each row).   

 

33.   Using the product rule and the fact that det(A), `in`(det(B), real) 

so their product commutes, 

 

    

 

34.   Using the product rule, and commutativity of multiplication 

in ℝ,  

 

     

 

However, by problem 31 above,  so this simplifies 

to Hence which is what we wanted to 

show. 

 

35.  Note:  U^There is the transpose of U.  By Theorems 5 and 6,  

 

   

 

Hence so x = det(U)is a root of  which 

implies x = 1or  x = -1. 

 

36.  By Theorem 6,  

 

  0 = det(A^4) = `*`(`*`(det(A), det(A))*det(A), det(A)) and `*`(`*`(det(A), det(A))*det(A), det(A)) = det(A)^4 

 

This shows so A  is not invertible by Theorem 4. 

 

40.  a.  det(AB) = det(A)*det(B) and det(A)*det(B) = -2(Theorem 6) 

     b.  det(B^5) = det(B)^5 and det(B)^5 = `^`(2, 5) and `^`(2, 5) = 32(Theorem 6) 

     c.  det(2*A) = `^`(2, 4)*det(A) and `^`(2, 4)*det(A) = -16(by problem 32 above) 

     d.  det(A^T*A) = det(A^T)*det(A) and det(A^T)*det(A) = `*`(det(A), det(A)) and `*`(det(A), det(A)) = 1(Theorems 6 and 5) 

     e.  det(AB/B) = det(1/B)*det(A)*det(B) and det(1/B)*det(A)*det(B) = det(A) and det(A) = -1(as in problem 34). 

>
 

>