> with(linalg); -1
 

>
 

MATH 244 -- Linear Algebra, section 1 

Problem Set 4 Solutions 

February 23, 2007 

 

Section 2.3 

 

6.  After replacing R[3]by  we have 

We see that rows 2 and 3 are  

now proportional -- if we replace R[3] by  

the last row will be all zeros.  Hence   A   is not invertible. 

 

8.  There is a pivot in each of the 4 columns in this 

upper-triangular  4 x 4 matrix, hence it is invertible. 

 

14.  A lower-triangular matrix is invertible if and only 

if all of its diagonal entries are nonzero.  This follows 

from statement c in the Invertible Matrix Theorem (Theorem 

8 in this section).  In order for there to be  n  pivots the 

diagonal entries must all be nonzero.  Conversely, if all 

the diagonal entries are nonzero, then there are  n  pivots. 

 

15.  No.  By the Invertible Matrix Theorem part e,  

if A  is invertible, then its columns are linearly independent. 

If there are two equal columns, the collection of columns 

is not linearly independent, so the matrix is not invertible. 

 

18.  No.  If  C x = v  is consistent for all  v,  then the mapping 

defined by  C   is onto (part i of the Invertible Matrix Theorem). 

As a result, part f also holds -- the mapping defined by  C 

is one-to-one, which says that C x = v  has a unique solution 

x   for all v.   

 

22.  If the system  Hx = c  is inconsistent for some  c, 

then part i of the Invertible Matrix Theorem is not true. 

The equivalence of the statements there means that  

all of the other parts fail for this  H.   In particular,  

the negation of part d  holds, and there is a nontrivial 

solution x <> 0of the homogeneous system  Hx = 0. 

 

26.  If the columns of  A  are linearly independent, then 

part e of the Invertible Matrix Theorem holds, so A 

is an invertible matrix (1/Aexists).  Since  1/A  exists, 

A^2 = `*`(A, A)is also an invertible matrix:    

But then the Invertible Matrix Theorem implies that statement 

h holds for  

 

30.  All of the statements in the Invertible Matrix Theorem 

hold for  A  and the linear mapping defined by  A. 

 

36.   Let  A  be the standard matrix of T.   Since T 

is onto, part i of the Invertible Matrix Theorem holds,  

hence all the other parts hold too.  In particular,  A 

is an invertible matrix.  Since 1/A  exists, we can  

use it to define a linear transformation too, and this 

is the inverse mapping  Typesetting:-delayDotProduct(1/T, 1/A)is also invertible 

(its inverse is A).  So all the parts of the Invertible 

Matrix Theorem also apply to 1/Aand   

In particular,  1/Tis both onto and one-to-one. 

(Of course, this also follows from general facts 

about when inverse mappings exist and what 

there properties are.) 

 

38.  The answer is No.  The reason is that the given 

information that T(u) = T(v)for some u <> v  says 

that T  is not one-to-one.  Hence all of the statements 

in the Invertible Matrix Theorem are false for  T.   

In particular, T is not onto.  

 

Section 2.8 

 

8. 

> Augmat := matrix([[-3, -2, 0, 1], [0, 2, -6, 14], [6, 3, 3, -9]]); 1
 

table( [( 1, 3 ) = 0, ( 2, 4 ) = 14, ( 1, 2 ) = -2, ( 1, 1 ) = -3, ( 2, 3 ) = -6, ( 2, 1 ) = 0, ( 3, 1 ) = 6, ( 1, 4 ) = 1, ( 3, 2 ) = 3, ( 2, 2 ) = 2, ( 3, 4 ) = -9, ( 3, 3 ) = 3 ] ) 

> gaussjord(Augmat); 1
 

table( [( 1, 3 ) = 2, ( 2, 4 ) = 7, ( 1, 2 ) = 0, ( 1, 1 ) = 1, ( 2, 3 ) = -3, ( 2, 1 ) = 0, ( 3, 1 ) = 0, ( 1, 4 ) = -5, ( 3, 2 ) = 0, ( 2, 2 ) = 1, ( 3, 4 ) = 0, ( 3, 3 ) = 0 ] ) 

The fact that this system is consistent shows that p  

is in the column space of A.   

 

16.  Not a basis for since the set is not linearly  

independent.  Note that if  v[1]and v[2]are the given  

vectors, then v[1]+2*v[2] = 0. 

 

18. 

> gaussjord([[1, -5, 7, 0], [1, -1, 0, 0], [-2, 2, -5, 0]]); 1
 

table( [( 1, 3 ) = 0, ( 2, 4 ) = 0, ( 1, 2 ) = 0, ( 1, 1 ) = 1, ( 2, 3 ) = 0, ( 2, 1 ) = 0, ( 3, 1 ) = 0, ( 1, 4 ) = 0, ( 3, 2 ) = 0, ( 2, 2 ) = 1, ( 3, 4 ) = 0, ( 3, 3 ) = 1 ] ) 

>
 

This shows that the given set is linearly independent.   

The Invertible Matrix Theorem says that the matrix 

with these columns is invertible, so the columns  

span real^3as well.  Hence, they give a basis for  

 

26.  The pivot columns are columns 1,2,4.  Hence 

(by Theorem 13 in this section),  columns 1,2,4 

of A  are a basis for Col(A): 

 

 

 

To find a basis for  Nul(A), continue and put the  

augmented matrix for Ax = 0  in rref: 

 

> gaussjord(matrix([[3, -1, 7, 3, 9, 0], [-2, 2, -2, 7, 5, 0], [-5, 9, 3, 3, 4, 0], [-2, 6, 6, 3, 7, 0]])); 1
gaussjord(matrix([[3, -1, 7, 3, 9, 0], [-2, 2, -2, 7, 5, 0], [-5, 9, 3, 3, 4, 0], [-2, 6, 6, 3, 7, 0]])); 1
 

table( [( 1, 3 ) = 3, ( 3, 6 ) = 0, ( 3, 5 ) = 1, ( 2, 4 ) = 0, ( 4, 6 ) = 0, ( 1, 5 ) = 5/2, ( 1, 6 ) = 0, ( 1, 2 ) = 0, ( 4, 5 ) = 0, ( 1, 1 ) = 1, ( 2, 6 ) = 0, ( 2, 3 ) = 2, ( 2, 1 ) = 0, ( 3, 1 )... 

The parametrization of the set of solutions is determined by the  

free variables x[3], x[5]; -1 

 

The two vectors here are a basis for Nul(A). 

 

32.  It is not all of by equivalence of parts d and h of the  

Invertible Matrix Theorem). 

 

34.  The solution of  Px = b  is unique for all  b  

by the equivalence of parts d, f, g  of the Invertible 

Matrix Theorem. 

 

Section 2.9.   

 

6.  This just means to find the scalars c[1] and c[2]such  

that  

 

> gaussjord(matrix([[-3, 7, 11], [1, 5, 0], [-4, -6, 7]])); 1
 

table( [( 1, 3 ) = -5/2, ( 1, 2 ) = 0, ( 1, 1 ) = 1, ( 2, 3 ) = 1/2, ( 2, 1 ) = 0, ( 3, 1 ) = 0, ( 3, 2 ) = 0, ( 2, 2 ) = 1, ( 3, 3 ) = 0 ] ) 

We see c[1] = -5/2and   

 

10.  This is similar to number 26 from Section 2.8.  A basis 

for the column space consists of the pivot columns of  

A -- columns 1,2,4.  So dim Col(A) = 3.  Then  

dim Nul(A) = 2 (the number of free variables).  Basis 

for Nul(A): 

> gaussjord(matrix([[1, -2, 9, 5, 4, 0], [0, 1, -3, 0, -7, 0], [0, 0, 0, 1, -2, 0]])); 1
 

table( [( 1, 3 ) = 3, ( 2, 5 ) = -7, ( 2, 4 ) = 0, ( 1, 2 ) = 0, ( 1, 1 ) = 1, ( 3, 6 ) = 0, ( 2, 6 ) = 0, ( 2, 3 ) = -3, ( 1, 6 ) = 0, ( 2, 1 ) = 0, ( 3, 1 ) = 0, ( 1, 5 ) = 0, ( 1, 4 ) = 0, ( 3, 2 )... 

Vector[column](%id = 139950056), Vector[column](%id = 140114252)(from parametrization of set of solutions of homogeneous system). 

 

16.  No.  Col(A) cannot equal real^3, since the columns are vectors with 

four components.  The column space is a three-dimensional 

subspace of The dimension of  Nul(A)  is the number of  

free variables in the system.  Since there are 3 pivot columns 

out of 7 columns all together, there must be 4 free variables,  

so  dim Nul(A) = 4. 

 

20.  dim Nul(A) = 3  means there are 3 free variables. 

In a 4 x 5 matrix, that leaves 2 pivot columns, and two 

basis vectors for the column space.  The rank 

is the dimension of the column space, so rank(A) = 2.  

 

 

22.  If dim Span(let  { 

be a basis for that subspace.  Each v[i]can be written as a linear 

combination of the basis vectors, so  

 

    v[1] = c[11]*u[1]+c[21]*u[2]+c[31]*u[3]+c[41]*u[4] 

    v[2] = c[12]*u[1]+c[22]*u[2]+c[32]*u[3]+c[42]*u[4] 

 

         ... 

     

 

Consider a linear combination of the v[i]that adds up to the 

zero vector: 

 

     

 

substitute the above expressions, and collect  

the terms involving each of the u[i]; -1 

 

     

 

Since the u[i]are linearly independent, this says 

 

   0 =  

   0 =  

   0 =  

   0 =  

 

This is a homogeneous system of 4 linear equations in 5 variables 

(the  

variables than equations.  Hence there is a nontrivial solution, and 

the v[i]  are linearly dependent. 

 

24.  Rank = 1 means that the columns span a one-dimensional 

space.  Each column is a scalar multiple of one of them.  Anything like 

 

Matrix(%id = 139168112)  gives an example. 

>