
Contemporary Mathematics
Volume ~~3, 1999

The Early Years of Computational Geometry-a Personal
Memoir

Michael Ian Shamos

ABSTRACT. A first-person account of the development of geometric algorithms
at the Yale University Department of Computer Science and Carnegie Mellon
University during 1972-1978 by one of the architects of computational geome­
try through his interactions with other researchers such as Dan Hoey, Stanley
Eisenstat, H. R. Strong, Gideon Yuval and Jon Bentley.

Computational geometry (CG) as a discipline is now a quarter-century old and
has given rise to several entire journals, scores of conferences and thousands of
publications. Because many sources credit me with having organized the subject
and formulated and solved some of its early problems [5], it seems appropriate for
me to relate the story of how computational geometry was born .

Most practitioners of CG are not aware that all of my work was motivated
by a single problem that I tried to solve while a graduate student at Yale in the
early 1970s. The problem was difficult because not only did the necessary tools
for solving it not exist, but the problem itself had never been examined from the
point of view of computational complexity. However, I cannot explain how I came
upon the problem, let alone why I became obsessed with building a new discipline
of computer science, without offering some biographical material.

My upbringing in New York City was science-oriented. My father was Chair­
man of the Physics Department at New York University and is now emeritus. He
was an experimental physicist with a facility for mathematics and I spent a lot of
time tinkering in his cosmic ray laboratory on the roof of NYU 's Main Building.
A Geiger counter was always on to warn of any spill of radioactive material, which
contributed to the excitement. The place was loaded with test equipment for mak­
ing sensitive electrical measurements and constant pain with trying to make it work
turned me eventually to a career in theory.

My mathematical education was in the hands of my grandfather who, as a civil
engineer and surveyor, laid out rights of way for the New York Central Railroad. His
training was classical and in weekly geometry sessions he taught me the algorithmic

1991 Mathematics Subject Classification. Primary 68U05 j Secondary 68-03, 01-08 .
Key words and phrases. Computational geometry, analysis of algorithms , history, c1osest­

points problem, Voronoi diagram, geometric intersection .
The author thanks an anonymous referee for pointing out embarrassing errors and making

important suggestions to improve the presentation .

@1998 Michael Ian Shamo8

313

314 MICHAEL IAN SHAMOS

methods of Euclid. I was fascinated then, as I am now, at the power of ruler and
compass constructions and was struck by the close connection in Greek geometry
between an algorithm and its corresponding proof of correctness. Sundays with
him were a world of reverse curves , drafting instruments and seven-place log tables.
My grandfather showed me the workings of his planimeter, which I still possess.
This device, now remembered only in museums, could figure the area enclosed by a
simple curve just by tracing a stylus over the curve's boundary. I was amazed that
a mechanical device could do this, and I still remember the machine 's dials turning
as the stylus moved over a piece of paper. At the time, I couldn 't imagine how this
was enough to calculate the area. This was perhaps my first tangible experience
with geometry and computation . It was with great satisfaction 20 years later that
I found an optimal algorithm to compute the area of a plane polygon,l using the
computer as a "discrete planimeter."

I entered the Horace Mann-Barnard School (then the Horace Mann School for
Boys) in 1958 and was lucky to have Bob Moses as my first formal math teacher.
He left the school a few years later to become a civil-rights worker and now runs
the Algebra Project in the Boston area, a grass-roots effort to teach inner-city
children the wonders of mathematics. He was and is a true educator. During
my freshman year, he gathered up a few students , tossed away the textbook, and
had us experimenting with matrix algebra while our less fortunate colleagues were
struggling with quadratic equations. This early exposure to matrices was important
background for me in solving the polygon area problem, which for a century had
been formulated as computing the determinant of a matrix of special form .

While at Horace Mann, I was selected to participate in the Columbia University
Science Honors Program, which provided high-school students from all over New
York City with advanced science courses taught by Columbia faculty members.
It was there that I was introduced to computers by two researchers from NASA,
Danny Gardner and Paul Schneck. We were allowed access to the IBM 650 at the
T . J . Watson Computation Laboratory. This machine had no disk memory and
its only input and output were in the form of punched cards, yet it could compute
much faster than mechanical calculators. We soon graduated to the IBM 7094,
which at least was transistorized and my friend Allan Cooper, who now works for
Microsoft, took the bold step one day of walking into the IBM Data Center at 59th
Street and Madison Avenue and asking whether IBM would let the two of us use
the machine for free. In 1962, IBM was charging $900 an hour for a 7094. The
manager was so astounded at the request that he granted it , and for the next year
I spent my off-hours there on a variety of programming projects .

NYU also had a 7094 that was being run by one of my father 's faculty acquain­
tances, Jack Schwartz. His name is now familiar to you as the author of many
papers in CG , but you may not know that he was a computer science pioneer 35
years ago. Jack was always bubbling with ideas. In 1963, many years before parallel
computing was taken seriously, he circulated a memo describing an interconnection
of 1024 mainframes to allow them to cooperate in the solution of numerical prob­
lems. He gave Allan and me summer jobs at NYU 's Courant Institute. Jack had
noticed that most programs written in assembly language ran for a few millisec­
onds before causing the machine to crash . It was nearly impossible to determine

IThis is easy to do in linear time. The problem is to reduce the number of multiplications
required to a minimum.

THE EARLY YEARS OF COMPUTATIONAL GEOMETRY-A PERSONAL MEMOIR 315

where the program had gone wrong because of a lack of debugging tools . (The
concept of a debugging tool did not even exist then .) He asked us to write a sys­
tem program, which we named SENTRY, that would monitor assembly language
programs to trap illegal operations and address references. This was essentially the
first software debugger , the concept of which you may credit to Jack "Schwartz .

All of this computing activity managed to get me admitted to Princeton. I
went there to study physics, but was sidetracked somewhat by mathematics. The
Physics Department did not accept majors until junior year, while Math allowed
sophomore concentration , so I majored in Physics and minored in Mathematics.
This created something of a course overload, which I solved by managing never to
take any courses in the English Department. My mother to this day wonders how I
got through Princeton's liberal arts curriculum without taking a literature course.

The quadrangle housing physics and math was alive with geniuses whom one
would pass without fanfare on the sidewalk. Alonzo Church, who was technically
in the Philosophy Department, was there. (Back then , when professors spoke rev­
erently of Church's Thesis , I thought it was the document he wrote to get a Ph.D.!)
C. C. Gillespie, the historian of science, Solomon Lefschetz , a founder of topology,
A. S. Wightman, the mathematical physicist, Marvin Goldberger and Sam Treiman
of the Goldberger-Treiman relations (the phrase had nothing to do with their per­
sonal lives) could all be found within a few yards of one another. If knowledge
could be acquired through osmosis, this was the place to be.

As a sophomore, I enrolled in Albert W. Tucker 's Topology Seminar. He was a
pioneer in the field , and made major contributions to game theory and operations
research as well . He is remembered fondly by everyone except me . For the seminar I
wrote a paper in which I tried to define a metric on plane closed curves that would
correspond to an intuitive notion of closeness of fit. The work was, alas , more
intuitive than rigorous , a defect to which I also readily admit in my later research.
Tucker would have none of it . I was summoned to his office by the University
police. While this sounds frightening, it was the standard method of delivering
important messages to students on campus. It never occurred to me that there
might be anything amiss and I even dreamed that he might want to collaborate on
extending the results . This fantasy was quickly dispelled. He asked me to explain
my paper to him , and questioned me sternly on every statement in it . After an
hour, he sat back , apparently pacified, and said, "The reason I called you in here
was to determine if you were pulling my leg or whether you are just stupid. I am
relieved to find it was the latter , so you will receive a passing grade. If you had
been trying to fool me, you would have failed the course." While he was caustic,
Tucker actually did me a favor by demonstrating conclusively that I had no future
in topology, a subject of which I had no inherent grasp.

My seminal undergraduate experience was working as a research assistant to
John Wheeler , who was best known as Feynman 's Ph .D. advisor and for inventing
the term "black hole." Long hours in laboratory courses had turned my taste
decidedly toward the theoretical. But how I could I get Wheeler to accept me as a
student? His field was general relativity, which was not even taught until graduate
school. For this reason , although he had a very active research group that met
weekly, he had only one other undergraduate assistant.

I prepared in secret by spending the first semester of junior year writing a
review of variational methods in general relativity and made an appointment to
show it to Wheeler. He leafed through the paper, but it was impossible to tell

316 MICHAEL IAN SHAMOS

whether it had made an impression. As a review, it contained no new results.
He then said, "Let's take a walk." I later learned that this meant he was about
to pose a problem-Wheeler did most of his work with colleagues while on foot .
He continued, "Back in 1945 , Feynman and I proved that electrodynamics can be
derived without the use of fields. That is , everything can be explained in terms
of bodies acting on one another at a distance. I have always wondered whether
one could develop a similar theory of gravitation. You can find our paper in the
Reviews of Modern Physics that year. Read it through and then come see me so
I can help you get started." [WF] I was dumbfounded. Here Wheeler had been
wondering about a question for 20 years, and he expected me to answer it.

That was the critical moment in my research life. If Wheeler thought I could
do it , he must be right . It was as if he had held on to the problem for two decades
waiting for someone at the right level to work on it. It wasn't difficult enough for a
Ph.D . student, and didn't merit a significant amount of Wheeler's time, but it was
a good challenge for an advanced undergraduate. It was invigorating to think that
a famous scientist felt I could create new theory when I had never done so before.

Since I didn't have any original ideas about action-at-a-distance gravitation at
the time, I made a huge effort studying the work of others. Unfortunately (or fortu­
nately), there were no published papers that even mentioned the concept. However,
I developed the habit of reading scientific journals obsessively, an addiction fueled
by the fact that the Math-Physics library was open 24 hours a day. I even skimmed
over papers I couldn 't begin to understand, just to absorb their notation and re­
member their results.

This behavior came in handy one day in the Spring of 1968. At the regular
meeting of Wheeler 's research group, someone posed the question whether the ex­
istence of matter necessarily implied the existence of electromagnetic force. It was
of course known that matter implies gravitation- that is what general relativity is
all about. But could one have a universe entirely of neutrons, for example, devoid
of electromagnetism? I immediately answered that electromagnetism must exist in
any universe, since Einstein had proven it . The group eyed me suspiciously. They
were on intimate terms with Einstein 's work; some of them, like Wheeler, had been
on intimate terms with Einstein himself. Nobody recalled such a result. I said,
"Oh, yes, it appeared in a paper of his in the Revistas Mexicanas de Fisica in the
early 50s. I'll be happy to run over to the library and bring back a copy." Wheeler
said they would all be obliged if! would do so . I returned with it about 20 minutes
later and the paper was passed around the table. It indeed contained the asser­
tion that electromagnetism must exist. The group was able to spot an error in the
paper rather quickly, and they assured me the problem was still unsolved despite
Einstein 's claim . From this episode I acquired a reputation for having an encyclo­
pedic familiarity with the published literature. Ritualistic reading of publications
would stand me in good stead five years later as I tried to assemble hundreds of
geometric problems for computational attack.

Wheeler 's intuition about action-at-a-distance was correct . There is a formu­
lation of gravity theory that does not require fields and is perfectly consistent with
"classical" general relativity. This work formed the subject of my undergraduate
thesis [Sh]. The problem was rather abstruse, as the very existence of gravita­
tional radiation , the subject of the thesis, had not been demonstrated at the time
and it is sti ll not known whether the phenomenon exists. Later, with the help of
Morton Tavel at the Vassar College Physics Department, I extended the work to

THE EARLY YEARS OF COMPUTATIONAL GEOMETRY-A PERSONAL MEMOIR 317

acoustics [ST]. Tavel was fascinated because the acoustic result is completely coun­
terintuitive. Neither electrodynamics nor gravitation requires a medium other than
vacuous space in which waves can travel. Acoustics requires a medium; otherwise
pressure waves cannot exist. It therefore seems impossible to have action-at-a­
distance in acoustics. Yet it is possible; however , the velocity of the waves is zero
unless there is a medium present , so the result is consistent with classical acoustics.

My hobby for a time at Princeton was computing, which then was under the
firm control of the engineering school, a foreign domain to us physicists. Because of
my earlier work as a system programmer for Jack Schwartz and a somewhat irrev­
erent attitude toward rules and regulations, I engaged in some activity that would
now be considered "hacking ," and was expelled for the rest of my undergraduate
days from the university computing center for a prank that was innocently intended
but had the effect of wiping out a month 's worth of computer accounting records.
The cost to the university to reconstruct the lost data was approximately equal to
my year's tuition . The incident did not diminish my enthusiasm for computers, but
extinguished any opportunity I might have had to act on it.

Upon graduation in 1968, I went to work immediately for IBM in East Fishkill,
New York at their semiconductor manufacturing plant. This was IBM 's largest
facility in the world , with over 20 ,000 employees, dwarfing the more famous "Main
Plant" in Poughkeepsie where mid-range mainframes were assembled. Fishkill
turned sand into logic. Literally. They grew silicon crystals for computer modules
right there in the plant. My job was to write quality control software to analyze
electronic test results performed in real-time on semiconductor circuits . Familiarity
with test equipment gained in my father 's laboratory was useful here; none of the
other programmers had any idea what an ohm was. The assignment may not sound
fascinating , but it was. Our resources were essentially unlimited , and the problem
was practical and vast. The factory turned out the logic devices used in a majority
of IBM computers (then a majority of the world 's computers) and costs, yields
and quality were essential concerns. I labored happily at the task until Vietnam
intervened and I was obliged in 1970 to go into government service.

What for many turned into tragedy was fortuitous for me and probably led
directly to the development of CG. I attempted to enlist in the Army, but for a
variety of reasons , including poor eyesight, I wound up as a commissioned officer
in the U.S. Public Health Service at the National Institutes of Health (NIH) in
Bethesda, Maryland . I was assigned to the National Cancer Institute (CI), to the
division responsible for developing and testing chemotherapy drugs .

The trick in chemotherapy is to kill cancer cells without destroying too many
normal cells. This is a sensitive matter of toxicity and involves getting the right
dose of the right compounds delivered to the right place in the body for the right
amount of time. NCI spent huge sums (in those days their budget was about $1
billion a year) studying chemical structures, trying to determine which portions of
a compound acted on cancer cells and which portions that caused healthy cells to
die could be eliminated. Richard Feldmann of the IH Division of Computer Re­
search and Technology (DCRT) had developed an interactive system to display and
search chemical substructures. This was revolutionary work . Indexing of chemical
compounds had previously been primitive, and there was no effective way to look
up, for example, all known compounds that contained a particular configuration of
atoms or radicals . In Feldmann 's system, all you had to do was draw a structure on

318 MICHAEL IAN SHAMOS

the computer screen with a light pen and you were presented with a list of chemicals
that incorporated that structure .

I was assigned as the liaison between Feldmann and NCI. One of the problems
he had not yet solved was how to draw chemical structures on the computer screen
in a presentable way. They were technically accurate in the sense that all of the
correct bonds were shown, but they didn't look nice. I was seduced by the problem.
If you open any book on organic chemistry, you will find it filled with beautiful
drawings of chemical structures. These are prepared by artists. The issue is how to
get a computer to draw them that way. Feldmann explained to me that chemical
structures are graphs with labeled nodes , so if I wanted to figure out how to do it
I had better read up on graph theory.

I had no acquaintance with that subj ect, although I did know what it was .
There were very few texts available, but the most accessible appeared to be Harary
[H] . I obtained a copy and spent nearly a year working through most of the
exercises. The book contains this intriguing statement on p. 106: "One of the most
fascinating areas of study in the theory of planar graphs is the interplay between
considering a graph as a combinatorial object and as a geometric figure." That was
exactly what we were studying at NIH. Harary went on to mention the result of
Istvan Fary that every planar graph can be embedded in the plane so that all of
its edges are straight line segments [F]. It started me wondering how one would go
about actually finding such an embedding.

I attended courses at DCRT that made me realize that I needed to go to
graduate school in computer science. My fiancee, Julie Van Allen, learned that
Yale had just started a department and was looking for students. I applied and was
accepted under the unusual condition that I would have no fellowship and had to
pay graduate tuition. I was, however , eligible for Veteran's benefits that would pay
living expenses. For my first two years at Yale, I labored under the detriment of
being the only graduate student in the Computer Science Department who actually
paid tuition to be there.

The department at Yale was small , filled with bright faculty members and
extremely research oriented . Where else could one work with Alan Perlis, the
creator of Algol, and Ned Irons, inventor of syntax-directed compiling, Martin
Schultz, the numerical analyst who wrote the fund amental text on spline theory,
and attend lectures by Sam Winograd, a pioneer in arithmetic complexity? Yale's
approach to starting new departments is that they are expected to be the equal of
any in the University and certainly the equal of any outside the University!

Yale 's attitude toward Ph.D. qualifying exams reflected this seriousness of pur­
pose. We were expected to complete them all during the first year and then devote
every moment thereafter to research. The Computer Science Ph.D. qualifiers were
exams like no other. We were tested in three subjects: Numerical Analysis, Hard­
ware and Programming, and Computational Complexity. Each exam was take­
home and lasted six days , to be turned in at noon. Upon handing in one exam,
we received the next, and so forth- 18 straight days of exams each semester, for
a total of 36 days of qualifiers in a nine-month year! And don't imagine that the
fact that the exams were take-home was any help ; all of the problems given were
unsolved and the answers could not be found in any book or paper. Eating and
sleeping were our own affair ; if we chose to engage in these activities it was at the
expense of the exams . In 1975, when I came to Carnegie Mellon , I learned that
their qualifying exam lasted 24 hours , which they thought was quite a challenge.

THE EARLY YEARS OF COMPUTATIONAL GEOMETRY-A PERSONAL MEMOIR 319

After Yale, I still laugh at the concept. I passed all the qualifiers with distinction
during the first year , which enhanced my reputation in the Department , and I was
free to do research full-time.

During that first year, three events took place that altered my view of com­
puter science. The first was the publication of Tarj an 's linear-time algorithm for
determining graph planarity [T] . It is difficult to appreciate now how revolutionary
this result was back then. All previous work on planarity testing had been based
on the mathematically elegant but computationally clumsy characterization due to
Kuratowski that a graph is planar if it does not contain a subgraph homeomorphic
to the complete graph K5 or the complete bipartite g~aph K 3 ,3' Direct applica­
tion of the theorem leads (with some difficulty) to an O(n5) algorithm. To do it
in linear time was mind-boggling, but it wasn 't just the speed of Tarjan 's method
that caught my attention. It was that he did not base his algorithm on any of
the classical theorems characterizing planar graphs. His approach was completely
constructivist- he just started to layout the graph so that if it were planar he
would produce a plane embedding and if the graph were not planar the algorithm
would report failure. This taught me that developing fast algorithms sometimes
requires going beyond traditional mathematics.

The second important event was the appearance of Richard Karp's paper, "Re­
ducibility Among Combinatorial Problems" [K], in which he showed that a large
collection of important and seemingly unrelated problems could be solved in poly­
nomial time if anyone of them could . His method of mutual reducibility seemed
a powerful and efficient way (from the point of view of the theorist's -time, not
computational effort) to use algorithms in multiple contexts. My plan for CG was
modeled directly after Karp 's structure.

The third inspiration was the publication of Volume III of Knuth , "Sorting and
Searching" [Kn] . Here was a huge collection of potential thesis topics! In those days ,
it was commonly accepted that if you could solve a level-50 problem in Knuth , you
would get a Ph .D . What amazed me about these unsolved problems was how simple
some of them appeared to be. I do not , of course, mean simple to solve, but simple
to state and apparent ly quite fundamental. One of them was the "post-office"
problem: Given n points in the plane, how quickly can it be determined which of
them is closest to a new given point p? I couldn 't believe this hadn 't been solved ,
since it seemed so important for geographic information systems, but it hadn 't .
An intimately related problem is the closest-points problem : given n points in the
plane, which two are closest together? It was a fixation with solving this simple
problem that ultimately led to the algorithmic development of the Voronoi diagram.

Ijoined the graph theory seminar, which met weekly to discuss current problems
and papers. I was assigned to present Tarjan 's algorithm to the group and suggest a
research problem related to it . When I thought of planarity, I immediately recalled
the straight-line result of Fary, and decided that it might be time to develop a
fast algorithm to produce straight-line embeddings of planar graphs. The seminar
advisor, Stan Eisenstat , thought this was a worthy problem, and I began working
on it . Tarj an 's algorithm did not seem to be useful immediately, so I went back to
Fary's original paper , which gave a constructive method, and tried to implement
it .

Fary 's construction requires repeatedly finding a point interior to the kernel of
a star-shaped polygon. I had never heard of a kernel before, nor even of a star­
shaped polygon , so I set out to find more about them in the li terature. The most

320 MICHAEL IAN SHAMOS

lucid explanation was in Yaglom and Boltyanskii [YB). A star-shaped polygon is
one having an interior point p with the property that the straight line segment
joining p with each boundary point lies wholly within the polygon. The kernel of
the polygon is the union of all such points p. A star-shaped polygon thus is one
having a non-empty kernel.

Essentially the only classical result on star-shaped polygons at the time was
Krasnoselsky 's Theorem, which states that a polygon P is star-shaped if and only if,
for every four vertices of P there is a point such that the segment joining the point to
each of the four vertices lies within P. This is a combinatorial characterization , and
although it gives an algorithmic test for star-shapedness, it provides no assistance
in constructing the kernel. The material in Yaglom and Boltyanskii made it clear
that the kernel is just the intersection ofthe interior half-planes of P . (Each edge e
of a simple polygon P determines two half-planes. The interior half-plane is the one
that lies to the interior side of e.) I therefore had a simple algorithmic prescription
for the kernel. An n-gon has n edges, so finding the kernel of an n-gon is no more
difficult than forming the intersection of n half-planes.

In 1973 I thought it would be a simple matter to go to the literature to find an
algorithm for intersecting half-planes and the problem would be solved. So I started
looking. To say that I searched high and low would be an understatement. Begin­
ning with Collected Algorithms from CACM, I then went through every computer
journal in Yale's substantial collection. There was nothing . I couldn't even find a
good algorithm for determining whether a two line segments intersect, a seemingly
trivial calculation that presents some unexpected pitfalls. At this point the choice
was to abandon the problem or develop my own tools for solving it . Giving up
was not a genuine option. Instead, I developed the obvious algorithm, which was
to start with one half-plane, and intersect it repeatedly with each other half-plane
in turn. This required observing that the intersection of k half-planes is a convex
(but possibly unbounded) convex figure having at most k edges. The intersection
of one of these objects with a half-plane can easily be formed in O(k) time, which
results in an O(n 2) algorithm for the kernel of an n-gon. Applying the result to
F:iry's construction gave an O(n3) algorithm for finding a straight-line embedding
of a planar graph. Viewed today, this is an extremely crude algorithm, but it was
the first time anyone had performed any algorithmic analysis of the problem. I had
no insight then into how the procedure might be improved.

In the Spring of 1973 , I presented this result to the Yale Computer Science
Department (CSD) at a seminar in which each graduate student was required to
report his research progress. Alan Perlis, the late spiritual leader of the Department,
attended these seminars faithfully. Perlis exuded genius. He had founded and built
the CMU Computer Science Department and was persuaded by Yale to assist in the
establishment of a department there. His statements on even the most mundane
topics were fascinating, and he peppered his lectures with pithy statements that
his students still remember today. (One of them is "ALGOL is a blight."-quite a
statement coming from one of its creators .) It was speculated among the graduate
students that Perlis was the only Yale faculty member who would be able to pass
all the Ph .D. qualifying exams if he had to. 2

21 learned later that this sort of postulating is common among graduate students everywhere.
When 1 arrived at eMU, I was immediately told that Alan Newell was the only faculty member
who could pass t he qualifying exams there.

THE EARLY YEARS OF COMPUTATIO NAL GEOMETRY-A PERSONAL MEMOIR 321

Perlis , who had a particular interest in geometry problems, listened attentively
to my talk. Toward the end , I made the mistake of saying that I thought the O(n 2)

algorithm for intersection of half-planes might be optimal. Perlis instantly made a
face at me, and it was clear he was skeptical. He was certainly justified, and not
only because faster algorithms have subsequently been found . At the time, there
was no computational problem having at most n inputs and n outputs for which
a polynomial-time algorithm was known and for which anyone had proven a lower
bound worse than n(n log n). After the talk was over, I went to Stan Eisenstat and
confessed that Perlis's reaction had shaken me. Eisenstat had an advance proof copy
of Aho , Hopcroft and Ullman's Analysis of Computer Algorithms, which contained
extensive material on divide-and-conquer . Why not t ry it?-Eisenstat suggested­
nothing else had worked . Divide the n half-planes into two sets, each having n/2
half-planes, form their intersection separately, and see where that goes, he urged .

The next day I went back to Eisenstat and said that the critical merge step was
intersecting two convex n/2-gons P and Q, but there appeared to be no published
literature on that problem. He thought about it , pronounced it trivial to solve in
linear time , and sketched an algorithm on the blackboard. Either P and Q have
intersecting boundaries, they are disjoint, or one contains the other. In the first
case , Eisenstat gave a procedure that started from an intersection point of the
boundaries of P and Q and stitched together the boundary of their intersection ,
using two pointers to keep track of progress along P and Q. I remember it was
very elegant , but neither of us was ever able to prove it correct, and it ignored the
question of how to find that crucial initial intersection point . However , Eisenstat
convinced me that a linear algorithm was possible, and then it was fairly simple to
find one.

In the spring of 1973 I was fortuitously introduced to Dan Hoey, an encounter
that certainly influenced the course of the field. Hoey was a Yale undergraduate
in Computer Science with a profound understanding of things computational. He
was always in the machine room nursing the PDP-10 and keeping the Department 's
Mergenthaler typesetting machine in working order. He was brilliant and friendly
but somewhat abstruse. He obviously had deep ideas, but was a bit shy about
explaining them orally and even less willing to write anything down. His taste
ran to mathematical puzzles and games having a mathematical component , like
backgammon . (Along these lines, Hoey later produced extensive analyses of the
problem of Rubik 's cube. Together we computed tables of bearing-off strategies in
backgammon.) He was interested in geometry problems, and saw funny diagrams
of mine coming out of the Versatec plotter. We struck up a friendship and spent
the next two years challenging each other with problems, inventing algorithms, and
writing a host of computer programs, only some of which related to geometry.

One day Shimon Even, a guest lecturer from Haifa, presented a seminar on
algorithms for finding minimum spanning trees in graphs. He went over the al­
gorithms of Kruskal and Prim, and even discussed the problem of the m aximum
spanning tree, which provoked some debate about why anyone would ever want to
find one. By that time, I was viewing the entire world through geometric glasses.
In my scheme, every problem involving numbers was a geometry problem. This is
correct in a rather trivial way. Every problem involving scalars or n-vectors can be
considered as a problem involving points in n dimensions. The only issue is whether
it is useful in a particular case to take this view. After Even's lecture, I wanted

322 MICHAEL IAN SHAMOS

to look at the spanning tree problem in the Euclidean plane, that is , where geo­
metric points are taken to be vertices of the complete graph and the edge weights
correspond to pairwise Euclidean distance.

The traditional approach forces one to consider all n(n-1)j2 edges of the graph
and leads to an O(n2 10g n) algorithm. I felt that the Euclidean problem was so
highly constrained, the edge weights not being independent but determined only by
the 2n coordinates of the points (even fewer degrees of freedom if allowance is made
for rotation, translation and change of scale). The question was how to use these
constraints to give a faster algorithm. I introduced the problem to Hoey and said
that there was a lot more about MST's we needed to know. For a mathematician
this would have been a summons to engage in some deep thought. For computer
scientists, it was an invitation to start programming. I suggested coding up the
Kruskal and Prim algorithms to see how they worked for the Euclidean case. We
did this on the PDP-10 , using a Tektronix display for output, so we could see the
MST's actually being constructed an edge at a time.

The results were productive. We quickly saw that the maximum degree of any
vertex in a Euclidean MST was six. This fact is easily proven once it is known , but
it had not previously been published. (We later learned that the result, along with
many others, appeared in an internal Bell Laboratories technical memorandum by
Ron Graham.) Although we discovered many .interesting MST properties, we made
no progress in developing a fast algorithm. With the appropriate data structure,
Prim 's algorithm leads to a quadratic algorithm. Because Kruskal proved that
the MST always contains a shortest edge of its associated graph, solving the MST
problem is at least as hard as solving the closest-points problem, a useful fact later
on.

In the summer of 1973 , Julie and I got married and rented a house in the woods
of Hamden, CT, a northern suburb of ew Haven, and acquired a large Belgian
sheepdog named assau. The property was next to a state land preserve and was
extremely quiet. During the year that we lived there, I do not recall hearing a
sound . This environment was conducive to contemplative research. After Julie
went to sleep at night, the dog and I would stay up working until about 4:00 a.m.
He was very patient with me, and listened with head cocked as I explained the
difficulties presented by some new problem. Our honeymoon year (we're now in
our 24th) was blissful, and her encouragement was crucial in keeping me going when
it would have been so easy to give up geometry for more traditional problems.

It was around this time that I started calling my ragtag collection of results
"Computational Geometry," unaware that the term had been used at least twice
before for different but related disciplines. In their 1969 book Perceptrons, Marvin
Minsky and Seymour Papert used the phrase to refer to analysis of raster images,
and Robin Forrest in England used it in the context of surface modelling and
CAD j CAM . All of these disciplines can properly be called computational geometry
because they all involve solving geometric problems by computer. In this memoir,
I use CG to mean the subclass of discrete algorithmic problems in [PS] and the
journal Discrete fj Computational Geometry.

In 1973 , David Dobkin and Richard Lipton joined the faculty. They worked
on a host of problem in computational complexity, including some geometric ones.
Their chief contribution to my work at the time was a short preprint entitled "On
Some Generalizations of Binary Search ," in which they showed how to determine
in which region of the plane formed by n intersecting lines a particular point p was

THE EARLY YEARS OF COMPUTATIONAL GEOMETRY-A PERSONAL MEMOIR 323

located [DL]. They gave an O(log n) algorithm, if polynomial-time preprocessing
of the lines is allowed. The idea is central to geometric searching , and it spurred
CG considerably. Lipton and Dobkin have by now had long distinguished careers
in theoretical computer science, and are responsible for many geometric results .

Dobkin was the head of my thesis committee, and my scientific relationship
with him has been the subject of some speculation. Our personal interaction was
often stormy, but we never had any disagreement over the significance of geometry
problems or whether the work deserved a doctorate. I felt I was up against a Catch-
22 situation-no matter how many new results I came up with , the committee
wanted additional ones. Such is the risk of defining a new field for one's Ph .D.
thesis- it's difficult to tell when you're done . From my vantage point now , the fact
that I was prodded to produce more was beneficial. It was important for the thesis
to have enough material and rigorous proofs to convince those outside Yale that
computational geometry was a worthy subject.

I devoted the fall semester of 1973 to tidying up work on convex polygons and
convex hulls . The planar convex hull problem was known by folklore in the graduate
computer science departments until Ron Graham published an elegant paper on
the problem in 1972 [G]. His was the first complexity analysis of a problem in
computational geometry, and he gave an O(nlogn) algorithm. It became apparent
early that finding the convex hull of n points in the plane is equivalent to sorting,
and I showed that every sorting algorithm has a natural interpretation as a convex
hull algorithm. Because of this equivalence, it is easy to prove that hull-finding
requires D(n log n) in the worst case. However , it is not immediately clear that
simply identifying the hull points , as opposed to listing them in sequential order, is
as difficult , but Andy Yao later showed that to be the case also [Y] . With respect
to convex polygons, I showed how to find the diameter and width (the shortest
possible distance between two parallel lines enclosing the polygon) in linear time,
which through the use of the convex hull leads to O(nlogn) algorithms for the
diameter and width of point sets in the plane. These results were completely new.
In hindsight they seem rather elementary, but the question of how difficult it is
computationally to find the diameter of a set of points had never even been asked,
let alone answered.

I formulated a large number of problems that seemed interesting and whose
solutions could be used to attack other problems. Given two polygons P and Q,
are they congruent? Can P be made to fit inside Q? What is the smallest triangle
(in a area) containing P? What is the largest triangle (in perimeter) that lies
entirely within Q? How many unit circles are required to cover P? What is the
smallest number of disjoint convex polygons whose union is Q? Is P simple? Some
of these I had no idea how to solve , but I thought they should be looked at from
the viewpoint of algorithmic complexity.

I also decided to do a complete review of the literature. I manually scanned ev­
ery issue of the Communications of the ACM, Journal of the ACM, SIAM Review,
Journal of Combinatorial Theory, Discrete Mathematics, American Mathematical
Monthly, and dozens of textbooks , looking for geometry problems to solve by com­
puter .

While I was at Yale, the University awarded John Wheeler, my undergraduate
advisor , an honorary degree. He appeared at the same ceremony at which I was
to receive a master's degree in computer science, so we had a chance to reminisce.
Wheeler had always taken a geometric approach to physics, especially cosmology,

324 MICHAEL IAN SHAMOS

and was intrigued by CG. We briefly discussed the possibility of using combinatorial
geometry as the basis of quantization of space, but nothing has yet come of the idea.

By June 1974, I had collected or posed about 75 problems, which I described in
a typewritten manuscript entitled, "Problems in Computational Geometry" [Sh4] .
This was meant primarily as a workbook for me, and it set forth a short statement
of each problem, gave a brief description of the obvious, or naive, algorithm for
the problem, followed by a discussion of the current state of the art. A secondary
objective of this collection was to convince the CSD that computational geometry
was a field, and not just a disconnected set of problems. What I did not count on
was the power of the Xerox machine. I sent out about five copies of the manuscript
to colleagues at other universities and research institutions. I estimate that several
hundred more were made thereafter by the recipients and those to whom they
passed copies. This was a boon to the field , for it caused many people to begin
thinking about and working on these problems. Science Citation Index reveals that
the workbook has been cited scores of times in the literature even though it was
never formally published.

Yale saw that Hoey and I were getting along well and arranged for us to have
office space together on the top floor of Dunham Laboratory on Hillhouse A venue,
a stone 's throw from the building in which the Department is now located. This
was providential. One day in the spring of 1974, I walked into the office to see Hoey
drawing some strange diagrams with colored ·markers on acetate. As usual , he was
excited and intense and had a cigarette dangling from his mouth. When I asked
what he was doing he said, "Given n points in the plane, each point is surrounded
by a convex polygon , not necessarily closed, such that if you're in a polygon than
the closest point of the set to you is the one that owns that polygon. I call them
proximal polygons." Hoey had independently discovered Voronoi diagrams!

He had marker ink all over his hands and showed me his drawings. The pictures
themselves were messy, but their underlying structure was beautiful. They looked
somewhat familiar to me, and I told Hoey that they looked like objects from solid­
state physics that we called Wigner-Seitz cells. This set me off on a literature search
to see what had been written about these structures. Hoey and I spent the next
several months investigating their properties. I eventually found that they had been
discovered by G . Voronoi and described by him in a 1908 paper [V]. They have
been rediscovered independently many times since. Hoey and I needed some name
for the overall structure. He liked the term "proximal diagram," but I knew that
whatever name we adopted would soon be in common use and I thought the name
of their inventor should be included, so I lobbied for "Voronoi diagram ," and the
term has stuck. It had never been used before. Despite my reverence for his work, I
have never seen Voronoi 's paper, since the particular volume that contained it was
missing from Yale 's Mathematics Library. Likewise "Delaunay triangulation" was
a phrase of my own creation.

The Voronoi diagram (V D) looks complicated, but Hoey realized that it only
contains a linear number of pieces. Thus in principle a lot of fast algorithms could
be obtained if the V D could be found quickly. For example, the two closest points
of a set can be found in linear time once the V D is known.

We had tried everything to cut down the time to find closest points in the plane.
It was maddening that the two farthest points (the diameter) could be found in
O(nlogn) time, but we could do no better that quadratic for closest points. Why
was "close" difficult when "far" was easy? I spent a lot of time worrying about that

THE EARLY YEARS OF COMPUTATIONAL GEOMETRY-A PERSO AL MEMOIR 325

one. The answer, as I u pected, i that there is no real difference between near
and far in a very general sense, as was later shown by I evin Brown in his CMU
Ph .D. thesis [B]. Hoey and I tried cutting et of points in half, in quarters, into a
fo by fo array of rectangles , and other bizarre divi ion . In the wor t case, none
yielded anything faster than quadratic. We would have been sati fied with O(n1.9)!
At least that would have provided ome hope, instead of the brick wall that we
faced.

Likewi e, Hoey and I were unable initially to produce any fast algorithms for
the Voronoi diagram. Using the algorithm for intersecting half-planes, it is easy but
tedious to develop an O(n2 10g n) algorithm. We were able to shave this down to
O(n2) through careful housekeeping, but then progre s ground to a dead halt. The
difficulty was largely psychological. Since we weren't sure that any ubquadratic
algorithm for closest points was po sible, there wasn't much point in looking for a
fast V D procedure. Neverthel , I was 0 taken with the potential of the Voronoi
diagram that I continued to study its properties, and found that it could be u ed to
find all clo e t points, smallest perimeter triangle, convex hull , minimum spanning
tr e and a triangulation of a point set. I also showed that it could also be u ed to
give the first O(log n) solution to Knuth's po t-office problem.

Since even Yale embraced the id a that olving a level-50 problem in Knuth was
worth a Ph .D., I knew I was done. In January 1975, I presented a thesis proposal
to the Yale CSD called , simply, "Computational Geometry." By that time, I had
obtained so many results that it was apparent that the work was sufficient for a
the is, and the proposal was well received. I felt confident that I would be able
to finish the thesis by May and made plans to return to IBM, from which I had
been on leave for five years. I had no desire to return to East Fishkill- it's a lovely
town , but not a center for algorithm re earch. I wanted to work at IBM's Re earch
Center at Yorktown Heights, Y, so I requested the opportunity to give are earch
talk as part of my job interview there.

The talk took place on January 2 , 1975, with many acquaintanc from the
IBM Computer cience and Mathematics Departments in attendance. One of them
was Ray trong, whom I knew from a Yale erninar on Petri nets. During the talk,
I de cribed efforts to olve the clo est points problem and said that I felt irked that
we had not be able to do better than O(n2), despite having "tried everything."
After the talk, Strong invited me back to hi office to di cus an idea he came up
with during my lecture. When we got there, he drew a set of point on the board
and outlined a procedure. Fir t find the median x-coordinate of the n points in
linear time by the method of Blum et al. Th vertical line M having this coordinate
divide the set in half. ow find the clo est pair of point in the left set and in the
right et and let the smaller of the two distances be o. Now draw line at distance 0
parallel to and on either side of the line M . trong aid it was sufficient to consider
only points that lie in the two vertical lab formed by these line .

Well , Hoey and I had een the e slab many times as we had tried the same
con truction in applying divide-and-conquer to the problem . So I immediately said
to trong, "But in the worst case all n points will lie in the slab, and you get
no improvement. He said, That 's true, but the point in the slab now have a
special structure. They're spar e. Within a slab, no two point are clo er together
than 0." My re ponse was, ' 0 what? How can you use that fact to do anything?"
Th re followed one of tho e moment that scienti t live for-a flash of in ight that
prod uces eternal clarity. Strong said, 'That mean that for every point in the left

326 MICHAEL IAN SHAM OS

slab you only have to look at points in the right slab that are within distance 15,
and there can be at most a constant number of them. For every point in the left
you don't have to look at every point in the right, so the merge step won't be
quadratic." This was the whole key to the closest-point problem.

There was a little more work to do; we had to find a procedure for locating
that constant number of points (at most six, it turned out) to be examined for
each point in each slab. This we did by sorting points by y-coordinate at each
recursive step, which led to an O(nlog2 n) algorithm. I wasn't happy about the
extra factor of log n , but I drove back to New Haven ecstatic in the knowledge that
the closest-point problem was subquadratic. That suggested that a fast algorithm
for the Voronoi diagram might be possible. I showed Strong's result to Hoey and
we huddled to see whether we could squeeze out that extra factor of log n. It turns
out that if the set of points is sorted initially by y-coordinate , no further sorting
steps are required, and the merge step of the divide-and-conquer can be performed
in linear time, which gives an O(n log n) algorithm.

After this, I made a renewed assault on constructing the Voronoi diagram. With
Eisenstat 's encouragement, I took another look at divide-and-conquer. Suppose we
divide a set of n points into two sets, Land R, splitting at the median x-coordinate.
Now form the Voronoi diagrams of Land R separately. I had gotten this far many
months earlier; the big stumbling block lay in the merge step: how do you join
the two diagrams together quickly? By playing with colored pens on transparency
film , I could see that a polygonal boundary P always exists between Land R such
that all of the Voronoi diagram of L lying to the right of P can be discarded and
all of the Voronoi diagram of R lying to the left of P can be discarded. The final
diagram consists of the sur vi ving portions pi us P . But how to find P?

The answer is that P starts at the convex hull of the set, where it is formed
by the perpendicular bisector of a hull edge joining a point of L and a point of R.
It then proceeds monotonically downward . Monotonicity is important; it allows P
to be constructed without backtracking. Since the Voronoi diagram contains only
a linear number of points and edges, a non-backtracking algorithm must finish in
linear time. These were the only insights required and the collection of closest-point
problems was completed about a week after my visit to IBM.

This was none too soon. In February of each year the ACM Computer Science
Conference was held. Its principal function , rumor had it , was to serve as a job
fair. Department chairmen from all over the country attended to watch potential
faculty candidates describe their research. It's a very good way to judge both the
depth of a person 's work and her ability to communicate. In 1975 the conference
was held at the Statler Hilton in Washington, DC, to which I ventured in hope of
a decent faculty appointment. Yale had a policy of not making offers to its own
graduate students, and in any event the tr·ansition from having been a student in
a department to faculty in the same department is difficult to manage. IBM, on
which I had pinned my hopes, surprised me by telling me that they were "reducing
their head count ," and it would be much more convenient for them if I just resigned
instead of coming back. So, after seven years with IBM , five on full-time unpaid
leave, I had to look for a job.

I prepared a short talk on the Voronoi diagram to deliver at the conference,
complete with the color drawings that are so effective in communicating its proper­
ties. When I arrived at the hotel , I got a copy of the conference proceedings to see

THE EARLY YEARS OF COMPUTATIONAL GEOMETRY-A PERSONAL MEMOIR 327

who else would be speaking at my session. To my surprise, there was another pa­
per on a geometry problem. Two operations researchers were studying a maximin
facilities locations problem: given n points in the plane, where should a new point
be located , within the convex hull of the others, so it is as far as possible from any
of the n original points? An obvious application of this problem has to do with
locating competing stores or noxious facilities such as sewage treatment plants. The
authors, I learned from their abstract, would present an O(n3) algorithm the next
day in my session.

I had never heard ofthe problem, but anything related to closest points screamed
"Voronoi diagram" to me. The abstract in the conference program was tantalizing
because it described only the result, not the method used to obtain it. I felt that
this would be a trial by fire for Voronoi diagrams, since it was the first closest-point
pro blem I hadn't known about at the time I found an 0 (n log n) algorithm for its
construction. If the V D could be used to solve an entirely new problem, it was
clearly a powerful tool.

The night before the talk , I stayed up to work on the facilities location problem.
It was immediately clear that if the facility could be located at a point interior to
the convex hull , then it must be at a vertex of the Voronoi diagram. (If you move
away from a Voronoi point, you're getting closer to some point, not farther away.)
The troublesome part was that if the point lay on the convex hull , it might be
anywhere on the boundary. It took another hour to prove that in that case it must
lie at an intersection of a convex hull edge and a Voronoi edge. That completed,
I had an O(nlogn) algorithm for a problem whose posers were to present a cubic
algorithm the next day. While this was exciting, I worried about whether it was
fair to the other authors to present it. I did so as politely as possible, and Joseph
Traub, the chairman of the Computer Science Department at Carnegie Mellon , who
was in the audience, invited me for a job interview.

When I came to CMU for the interview, Traub had arranged for me to see
George Fix, the chairman of the Mathematics Department. Fix was a former col­
league of Martin Schultz and had worked on triangulation algorithms for the finite
element method , so he was receptive to CG. Later that day, after a hasty confer­
ence with Fix, Traub offered me a joint appointment in the Computer Science and
Mathematics Departments. I was thrilled at this honor , but later learned the bad
news- I had to maintain a full teaching load in both departments! I looked at
the catalog of the Math Department and noticed that Combinatorics had not been
taught during the preceding five years. I immediately proposed to resurrect it . Fix
said he would have to put it to a vote of the faculty. It turned out that he had quite
a lobbying job. The CMU Math Department was heavily dominated by analysts.
When Fix explained to them that combinatorics was only being taught every five
years, one of them grumbled, "Why so often?"

I had a few months left at Yale, and returned to a problem that had been
nagging me for two years: how can you tell whether a polygon is self-intersecting?
It is easy to check by examining each pair of edges to determine whether they
intersection but this gives a quadratic algorithm . Could it be done faster? I posed
the problem to Hoey, and after a week of intense introspection fueled by coffee and
cigarettes and interrupted only by an occasional game of backgammon, Hoey had
a beautiful idea. He first generalized the problem to that of determining whether
any two of a set S of n line segments intersect, and then observed that if none of
the segments is vertical , then with respect to any given value of x (say, x = b),

328 MICHAEL IAN SHAMOS

all segments of 5 that intersect the line x = b are totally ordered by the "above"
relation. That is, of any pair of segments c and d that intersect x = b at abscissas
e and J, respectively, then c > d if e > J and c < d if e < J, while c = d if e = f.
As the value of b changes, two segments can only change places with respect to
one another in the total order if they intersect somewhere. Hoey also realized that
two segments intersect iff they are adjacent in the total ordering for some value of
b. At this point in my thesis research, I was familiar enough with the subject to
know that this was a totally original concept. No one had previously defined such
a relation.

Hoey suggested sweeping a vertical line through 5 from left to right, maintain­
ing a list of segments that intersect the line in the order determined by the "above"
relation. A segment is added to the list when its left endpoint is encountered and
is removed when its right endpoint in encountered. Before a segment is added, it is
checked against its neighbors in the ordering to see if it intersects either of them.
When a segment is removed, any pair of segments that then become adjacent must
be checked for intersection. If each segment is added and eventually deleted from
the list without an intersection being found , then 5 is intersection-free.

It remained to find a data structure in which the total ordering could be main­
tained, in which n insertions and n deletions could be made, and the successor and
predecessor of each segment in the total ordering could be found n times , all in
less than quadratic time. This task fell to me, along with proving the algorithm
correct . At the time, AVL trees were barely known, and then only through a mar­
ginal reference in Knuth. 2-3 trees had just been invented. Either of these data
structures would fill the bill, but 2-3 trees were easier to code, so we set about pro­
gramming. The algorithm worked like a charm and was amazingly fast. It seemed
clear that the algorithm worked, but my job of proving it was somewhat tricky
because of the need to be careful about degeneracies. I was able to show that it
always finds a leftmost endpoint, and wrote up the paper [SH2]. This sweep-line
algorithm turned out to be a fundamental technique in CG that had no real pro­
genitor . It formalized the tools necessary to solve the hidden-line problem, which
had previously been attacked through a hodge-podge of ad hoc methods.

At about the same time, Hoey developed the generalized Voronoi diagram. I
had earlier shown him the farthest point V D along with a proof that, unlike the
closest-point V D, its graph is outerplanar. We had also experimented with Voronoi
diagrams of line segments, polygons, sets of points and line segments, circles and
other geometric figures . We also had made such diagrams in the and metrics. Many
of these were later rediscovered and published by other researchers. But no one had
yet considered the locus of closeness to multiple points. Hoey invented the higher­
order V D and gave an argument that the sum of the number of Voronoi edges in all
V D's of all orders on a given set of n points in the plane is only O(n3

). (This was
a slight surprise, since the total number of subsets of n points is 2n .) I produced a
precise enumeration, which appeared in our Voronoi diagram paper [SH]. This is
the paper of which I am most proud, since it is so closely modeled after Karp's and
achieved the desired result of unifying problems that had not even been mentioned
previously in the same breath.

My thesis was not complete when I left Yale in June 1975, but I didn't see the
point in remaining a graduate student. I didn't realize that I would get sidetracked
by other research and responsibilities, and wouldn ' t actually turn in a thesis for
more than another two years [Sh 2]. I finally received a Ph.D . from Yale in 1978,

THE EARLY YEARS OF COMPUTATIONAL GEOMETRY-A PERSONAL MEMOIR 329

exactly three years after leaving. My . grandfather lived to be 93 years old , and
turned 88 shortly before I got my diploma. He made the trip to New Haven for the
graduation ceremony with pride and understood quite well that the degree was for
geometric work inspired by our Sunday lessons with his planimeter.

Hoey stayed on at Yale for a time and then became a graduate student at
CMU. He had many other interests beside geometry, and now works for the Naval
Research Laboratory in Washington. In the meantime, I met two additional col­
laborators. The first was Jon Bentley, who in 1975 was a graduate student at the
University of North Carolina. As his thesis work, he undertook to generalize the
sparsity algorithm for finding closest points into higher-dimensional space. His in­
sight was that you could solve an n-point problem in d dimensions by solving two
n/2 point problems in d dimensions (the divide step) and one n-point problem in
d-1 dimensions (the merge step). This gave an O(nlogd

-
1 n) algorithm instead of

the rote O(dn2), and was a major advance [BS2]. I told Traub that we needed
Bentley at CMU and his appointment was arranged in short order.

Bentley and I worked on a host of prob,1ems in geometry, statistics, and comb i­
natorics. Most of them are described in his prodigious published output . Within a
few years, he produced over 50 papers. He and Thomas Ottmann generalized the
Shamos-Hoey line segment intersection algorithm to enumerate the intersections
in O((k + n) logn) time, a result subsequently improved by others. Bentley and
I taught and worked with students all day and then assembled at my house each
night at 11 :30 to watch reruns of the television series Kojak and do research with my
dog Nassau, the world's best canine geometer. We were devoted fans of the show,
and Bentley, who was constantly finding analogies between search algorithms and
detective work, was not above quoting dialogue from Kojak in his scientific papers.

Bentley and I worked primarily on blazingly fast algorithms, since we were
interested in large practical problems involving huge amounts of data, such as
satellite images. For such work even O(n log n) algorithms are too slow-real­
time processing must take no more than linear time. This means in some cases
having to accept approximate answers. But not in all . Bentley and I spent a lot of
time on average-case analysis. It bothered us that so many such analyses depended
on unreasonable assumptions about the statistical distribution of the inputs. We
finally found a way to construct the convex hull of a plane set in average linear
time regardless of the form of the distribution of the points, provided that the
distribution is continuous [BS] . From then on we were hooked, and hardly ever
looked at another algorithm unless it was O(n).

Jay Kadane of the CMU Statistics Department liked our work on average­
case analysis and discrete algorithms for statistical problems and arranged for me
to be appointed to a faculty position there also. I thus became the only person
at CMU ever to hold appointments in the Computer Science, Mathematics and
Statistics Departments simultaneously. (Don't worry, my first experience with a
joint appointment left scars. I was promised that I wouldn 't have to teach any
extra courses, just an annual seminar in computational statistics.) In my view, all
statistical problems are geometry problems. Some of my colleagues felt just the
reverse was true.

My other collaborator was Gideon Yuval, a visitor to CMU from Israel. Yuval
was an intuitive thinker, much like Hoey, and had no taste for formal proofs. He had
flashes of great insight, and when he turned his mind to a problem for any length of
time one could be sure that interesting ideas would emerge . One day I mentioned

330 MICHAEL IAN SHAMOS

to him a stumbling block in the theory of lower bounds. At the time, all non­
trivial lower bounds on computation time were based either on fan- in, algebraic
independence or information-theoretic arguments . For example, sorting requires
D(n logn) time because every comparison tree containing all n! permutations of
n objects has depth at least n log n. There was no problem in existence having n
inputs and a single number as output for which a polynomial-time algorithm was
known for which any non-linear lower bound had been proven. This bothered me
tremendously, since many geometry problems yield single numbers as results, and
I couldn't demonstrate any good lower bounds for them.

Yuval asked me which problem I had in mind , and I said the mean distance
among n points in the plane. (That is , the sum of the pairwise distances divided
by the number of pairs.) This was a maddening problem because the average
square of the pairwise distances can be found trivially in linear time. It was also
difficult since no techniques were known for dealing with complexity in terms of
square roots , except some old results of Hilbert not immediately applicable to this
particular problem. Yuval went off to think about it . The next day he said, "Of
course, it must take quadratic time in the worst case." This was striking news,
since no quadratic lower bound on any polynomial-time problem was then known .
(Quadratic, that is, in the number of inputs.) I challenged him to prove it , but
proof was not Yuval 's strong point. He instead gave an intuitive argument that
dazzled me. He said to consider any algorithm that computes the function D that
is the sum of the pairwise distances from the 2n coordinates of the points. Each
distance is a square root. Now consider D as a function of 2n complex rather
than real variables. The Riemann surface of D must have D(2n (n -l)/2) sheets, and
therefore at least n(n - 1)/2 square root operations must be required to produce a
Riemann surface of this complexity.

I was familiar enough with Riemann surfaces from undergraduate school, but
I had never heard the term used in connection with computational complexity. It
seemed clear that Yuval's idea was either very profound or totally ridiculous. After
all , what did an ordinary geometry problem have to do with complex variables? I
struggled over the next weeks not only to produce a proof, but also to develop a
model of computation in which the results would make sense. The "square root"
as an elemental operation existed in no known model of computation. The key
is having a set of operations in which only the square root operation can cause a
bifurcation of the Riemann surface. Though unexpected, the Shamos-Yuval result
is as tight as can be. For n points in the plane, exactly n(n - 1)/2 square roots
are necessary and sufficient to compute the mean distance [SY]. The result is also
very robust in the sense that all kinds of auxiliary operations can be added to the
model without reducing the lower bound. In addition to arithmetic operations, one
may feel free to add exponentiation, trigonometric functions , hyperbolic functions ,
Bessel functions and many other special functions . one of these is sufficient to
reduce the number of square roots required even by one.

It has always been my practice in looking at research problems to examine the
simplest, almost trivial, cases to obtain a full understanding . In geometry, this
often meant looking at one-dimensional problems. How difficult is it to compute
the mean distance among n points on a line? Here no square roots are involved .
If the points are sorted, it is easy. The interval between point k and point k + 1
is part of the interval connecting all points whose left endpoint is between 1 and
k and whose right endpoint is between k + 1 and n, inclusive. This means that

THE EARLY YEARS OF COMPUTATIONAL GEOMETRY-A PERSONAL MEMOIR 331

the sum of the distances is just a weighted sum of the intervals between adjacent
points. However, since the final result is a single number, how can we prove that
sorting is required?

Yuval also provided the key to this one-dimensional case. He observed that
in the arithmetic decision tree model, one can always compute partial derivatives
of any computed quantity with respect to any of the input variables without any
additional comparisons. He then explained that the partial derivatives of the mean
distance with respect to the x-coordinates of the points can be used to reconstruct
the values of k, that is , the indexes of the points in sorted order. Therefore, any
mean distance algorithm can be transformed into a sorting algorithm without per­
forming even one extra comparison. This gives an n (n log n) lower bound for the
mean distance on one dimension. This result is very powerful , for it is a virtual
generator of lower bound results . Perhaps because it lies buried in a conference
proceedings, it has been utilized only rarely and appears to be unknown to most
researchers [SYJ.

During my second three-year appointment at CMU, I began to grow restless.
It was difficult to obtain funding for geometry research because so few people were
engaged in it that the government agencies assumed it was not important. A shining
exception was the Office of Naval Research (ONR) , which was a firm supporter
from the beginning. Even while I was a graduate student at Yale, ONR allowed
me to serve as co-principal investigator with David Dobkin . I was disappointed
at the apparently slow uptake of CG by computer scientists, even though I had
enthusiastic colleagues in Jon Bentley, Ron Graham, Franco Preparata, D.T. Lee,
Leo Guibas, Gottfried Toussaint and Bernard Chazelle, and many others in Europe,
such as Herbert Edelsbrunner and Thomas Ottmann.

Being at CMU, I was exposed to a lot of forefront software that was under
development there. I noticed that after a project's final report was turned in,
nothing else would be done with the resulting software. I thought this was wasteful
and in 1979 I became a reluctant entrepreneur. I formed a software company to
market the Scribe document production system, which was developed by Brian
Reid , then a graduate student at CMU. His system was the forerunner of desktop
publishing, and he eventually received the Grace Murray Hopper Award of the
ACM for it. Growing the company turned my attention to business matters , and I
eventually found it useful to obtain a law degree. These activities were inconsistent
with being a full-time faculty member, so in 1981 I shifted to adjunct status and
spent the next 17 years combining a legal career with starting software companies.
At the beginning of 1998, I returned to CMU to lead a project called the Universal
Library, which can be thought of as an electronic "library of libraries" a gateway
to all digital Internet collections. A license to practice law, once obtained, is rarely
relinquished, so I am still a partner in the Webb Law Firm, the largest intellectual
property practice in Western Pennsylvania, where my concentration, logically, is in
computer law.

The existence of my textbook with Franco Preparata [PSJ is due to the inter­
cession of Ron Graham. Every new discipline needs some time to mature before a
sensible introductory book can be written , and indeed in the case of computational
geometry none had appeared during the decade following 1975, a year in which
many results were published . Graham , an generous and unselfish supporter of re­
search in combinatorics and discrete geometry, thought that it was about time for
a book. He would have been perfectly qualified to write one, but he felt that the

332 MICHAEL IAN SHAM OS

first book should come from the architects of the subject . After 1981 I was in no
position to take on the task, so Graham cajoled Preparata into doing it .

I had met Franco at the SIGACT conference in Albuquerque in 1975 when
I presented my first geometry paper [Sh3] . We subsequently attended numerous
conferences together but had never actually worked on a problem together. He
was kind enough to invite me to teach at the Winter School of Computational
Geometry in Erice, Italy in 1978. (By curious coincidence, this was the last time
I saw Yuval-on the ancient Carthaginian island of Motya, off the western coast
of Sicily.) When Franco took up the book project, he proposed to start with the
text of my Ph.D. thesis, supplementing it with additional material and adding new
chapters. Even though the resulting book contains many of my words and results,
it was really written by Preparata, and he is now working on a new edition .

I have no regrets about having retired from active work in computational ge­
ometry. I did as much as I could, and feel pleased about having laid out the field
and constructed its first tools. Many recent results by others are so complex that I
am certain I could never have discovered them myself, and the subject is certainly
flourishing . Those who are quick to link cause and effect might note that CG did
not really take off until I left it!

Like all fishermen, I sigh at the ones that got away. I wish I had been a partic­
ipant in some results that escaped me completely: Megiddo's linear-time algorithm
for linear programming in two and three dimensions, Lee and Preparata's linear­
time algorithm for the kernel of a simple polygon, the results of Tarjan , Chazelle
et al. on triangulating polygons, and the Lipton-Tarjan algorithm for separating
planar graphs. I came so close with Megiddo. He was visiting CMU for a year in
the Graduate School of Industrial Administration, where operations research was
done. He called me up one day from across campus and asked whether I knew that
my O(n log n) algorithm for the smallest circle enclosing n points in the place was
not optimal. I had never heard of him and thought the call was a prank! Now there
was a missed opportunity! And it would have been nice to have appreciated the
importance of motion planning back then. However, I made my contribution and
moved on, and it is a pleasure now to watch the oak trees that have grown from
acorns planted in the 1970s.

I marvel that everything in my life preceding the work in computational geom­
etry seemed to have prepared me for it , and am grateful for the confluence of people
who contributed their time, ideas and encouragement. They did it because they
loved tbe problems, and worked on them without any thought of having proper
credit ascribed to them. Therefore I hope this account clarifies who did what in
the early years.

References

[BS] J. L. Bentley and M. I. Shamos, Divide and conquer for linear expected time. Info. Proc .
Lett. 7:87- 91 (1977) .

[BS2] J. L. Bentley and M. I. Shamos, Divide and conquer in multidimensional space. Proc. Eighth
Annual ACM Symposium on Automata and Theory of Computing (May, 1976) 220- 230.

[B] K. Q. Brown, Geometric Transformations for Fast Geometric Algorithms. Ph.D. Thesis,
Department of Computer Science, Carnegie Mellon University (1979).

[DL] D . P . Dobkin and R. J. Lipton, On some generalizations of binary search. Yale University
Computer Science Department Technical Report (1974).

[F] I. Fary, On straight line representations of planar graphs. Acta Sci. Math . Szeged. 11:229-
233 (1948).

THE EARLY YEARS OF COMPUTATIONAL GEOMETRY-A PERSONAL MEMOIR 333

[G) R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set.
Info. Proc. Lett . 1:132-133 (1972) .

[H) F. Harary, Graph Theory. Addison-Wesley, Reading, MA (1971).
[K) R . M . Karp, R educibility among combinatorial problems . In Complexity of Computer Com-

putations. Edited by R. E. Miller and J. W. Thatcher. Plenum Press, New York (1972) .
[Kn) D. E. Knuth , The Art of Computer Programming Volume III: Sorting and Searching.

Addison-Wesley, Reading, MA (1968) .
[PS) F. P. Prepa rata and M . 1. Shamos, Computational Geometry: An Introduction . Springer­

Verlag, New York (1985).
[S) R. Sedgewick, Algorithms. Addison-Wesley, Reading, MA (1983) .
[Sh) M . 1. Shamos, A n Absorber Th eory of Gravitational R adiation. Senior undergraduate thesis ,

Physics Department, Princeton University (1968).
[Sh2) M. 1. Shamos, Computational Geometry. Ph.D . thesis, Department of Computer Science,

Yale University, 1978. Ava ilable from University Microfilms , Ann Arbor, M1.
[Sh3) M . 1. Shamos, Geometric complexity. Proc. Seventh Annual ACM Symposium on Automata

and Theory of Computation (May, 1975) 224-233 .
[Sh4) M. 1. Shamos , Problems in Computational Geometry. Unpublished book manuscript (1974,

revised 1977). Distributed in photocopy.
[SH) M. 1. Shamos and D . Hoey, Closest-point problems. Proc . Sixteenth IEEE Symposium on

Foundations of Computer Science (Oct ., 1975) 151- 162.
[SH2) M. 1. Shamos and D . Hoey, Geometric inte·rsection problems. Proc. Seventeenth Annual

IEEE Symposium on Foundations of Computer Science (Oct ., 1976) 208- 215.
[ST) M. 1. Shamos and M . A . Tavel, An absorber theory of acoustic radiation. J. Acoust. Soc.

of America 54:46-49 (1973).
[SY] M. 1. Shamos and G. Yuval, Lower bounds from complex function theory. Proc. Seventeenth

Annual IEEE Symposium on Foundations of Computer Science (Oct ., 1976) 268-273.
[T) R. E. Tarjan, D epth-first search and linear graph algorithms. SIAM J . Comput . 1:146- 160

(1972) .
[V) G. Voronoi , Nouvelles applications des parameres continus a. la theorie des f ormes quadra­

tiques. J . reine angew. Math. 134, 198- 287 (1 908) .
[WF) J. A. Wheeler and R. P . Feynman , Interaction with the absorber as the mechanism of

radiation. Rev. Mod . Phys . 17:157 (1 945).
[YB) 1. M . Yaglom and V . G. Boltyanskii , Convex Figures. Holt , Reinhart and Winston , New

York (1961) .
M A. C . Yao , A lower bound to fi nding convex hulls . J . ACM 28:780- 787 (1981).

SCHOOL OF COMPUTER SCIENCE, CARNEGIE MELLON UNIVERSITY, PITTSBURGH, PA 152 13
E -mail address: shamostDcs . cmu . edu

	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333

