MATH 392 - Geometry Through History - Quiz 1 - February 19, 2016
Your Name: \qquad
Assume Postulates I - V of Euclid's Elements hold.
(A) (20) Let $A B C D$ be a parallelogram (vertices A, B, C, D named counterclockwise around the boundary) with $A B=B C=C D=A D$, so the parallelogram is a rhombus. Show that the diagonals $\overline{A C}$ and $\overline{B D}$ bisect each other and meet at a right angle. That is, show that if the diagonals intersect at E, then $A E=E C, B E=D E$, and $\angle A E B, \angle B E C$, etc are all right angles. Use only facts contained in Book I of Euclid for this.

Figure 1: Figure for Proposition 47, Book I
(B) Extra Credit (10) Show that if we have the situation of Euclid's Proposition I. 47 as in the figure above, then $\overline{A D}$ and $\overline{C F}$ meet at a right angle. For this one, any complete proof is OK; don't feel constrained to argue by only Euclidean methods. Coordinates, vectors, trig, etc. are all legal.

