MATH 351 - Modern Algebra 1

 Selected Solutions for Problem Set 7November 3, 2018
4.46. (1) We are given that N and K are subgroups of index 2 of G with $N \neq K$. By Theorem 4.1 in Lee, note that both N an K are normal subgroups of G. By the result of Exercise 4.5, $N \cap K$ is also a normal subgroup of G. This follows because if $g \in G$ is arbitrary, and $a \in N \cap K$, then $a \in N$, so $g a g^{-1} \in N$ and similarly $a \in K$, so $g a g^{-1} \in K$. Hence gag $^{-1} \in N \cap K$, so $N \cap K$ is normal in G. The same argument just given also works if we only take $g \in N$. Hence $N \cap K$ is also a normal subgroup of N. Now by the Second Isomorphism Theorem, we have

$$
N /(N \cap K) \cong N K / K
$$

We claim that $N K=G$. This is true because K has index 2 in G. In the set

$$
N K=\{n k \mid n \in N, k \in K\},
$$

if $n \in K$ as well, then $n K=K$, so we get $K \subset N K$. On the other hand, we are assuming $N \neq K$, so there are $n \in N$ that are in $G \backslash K$ as well. If $n \notin K$, then the coset $n K=G \backslash K$, the other left coset of K in G. So $G \backslash K \subset N K$ as well. Hence $K \cup(G \backslash K)=G \subseteq N K \subseteq G$. It follows that $N K=G$. Now we have proved what was required since

$$
[N: N \cap K]=|N /(N \cap K)|=|N K / K|=|G / K|=2
$$

(2) Now consider the mapping

$$
\begin{aligned}
\alpha: G & \rightarrow G / N \times G / K \\
g & \mapsto(g N, g K)
\end{aligned}
$$

G / N and G / K have order 2 so each is isomorphic to \mathbf{Z}_{2} by Corollary 4.2. We want to show that α is a surjective group homomorphism and identify the kernel as $N \cap K$ to show that $G /(N \cap K) \cong \mathbf{Z}_{2} \times \mathbf{Z}_{2}$. Here are the individual steps:

- We claim first that α is a group homomorphism. This is true because

$$
\alpha(g \cdot h)=((g \cdot h) N,(g \cdot h) K)=(g N \cdot h N, g K \cdot h K)=(g N, g K) \cdot(h N, h K)=\alpha(g) \cdot \alpha(h),
$$

using the definition of the coset product in G / N and G / K.

- The kernel of α consists of the $g \in G$ such that $(g N, g K)=(N, K)$, the identity element of $G / N \times G / K$. But $(g N, g K)=(N, K)$ if and only if $g \in N$ and $g \in K$, so $g \in N \cap K$. Hence $\operatorname{ker}(\alpha)=N \cap K$.
- Next, we claim that $\alpha(G)=(G / N, G / K)$ (that is, that α is surjective). This follows by thinking about what part (1) of the problem says. We have $[N: N \cap K]=2$. The same argument, but reversing the roles of N, K shows that $[K: N \cap K]=2$ as well.

Moreover $[G: N]=[G: K]=2$ by assumption. It follows that G decomposes into four disjoint subsets:

$$
N \cap K,(G \backslash N) \cap K, N \cap(G \backslash K) \text {, and }(G \backslash N) \cap(G \backslash K)
$$

All of these are nonempty since $[N: N \cap K]=[K: N \cap K]=2$. The g in the first map to (N, K) under α, and the g in the other three subsets map to the other three elements in $G / N \times G / K$. Therefore α is surjective.

Comment: We actually saw an example of the pattern described here when we considered $G=D_{8}, N=\left\langle R_{90}\right\rangle$ and $K=\left\{R_{0}, R_{180}, F_{1}, F_{2}\right\}$. These are two unequal subgroups of order 4 in a group of order 8, so we're exactly in the situation of the problem. In this case, $N \cap K=\left\{R_{0}, R_{180}\right\}=Z\left(D_{8}\right)$ and we showed directly that

$$
D_{8} / Z\left(D_{8}\right) \cong \mathbf{Z}_{2} \times \mathbf{Z}_{2} .
$$

