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6.26. By Theorem 6.6 in Lee, we know that every σ ∈ Sn is a product of transpositions,
but those transpositions can contain any of the (ab), with 1 ≤ a < b ≤ n. On the other
hand, by Lemma 6.2, we know that

(1a)(1b)(1a) = (1a)(1b)(1a)−1 = (ab).

Hence in any factorization of σ into transpositions, we can replace any transposition (ab)
with a, b 6= 1 by the product (1a)(1b)(1a) as above. This shows that every σ ∈ Sn can be
written as a product of the “special” transpositions (1i) with 2 ≤ i ≤ n.

6.28. There are many different proofs of this fact. Let’s look at two, both of which are
based on Exercise 6.26 above.

Proof 1: (This one might be the “slickest”.) Letting σ = (12) and τ = (12 · · ·n) as in the
problem statement, note that Lemma 6.2 implies:

τστ−1 = (23)

τ(23)τ−1 = τ2στ−2 = (34)

τ(34)τ−1 = τ3στ−3 = (45),

and hence, continuing in the same way every “consecutive” transposition (k k + 1) with
1 ≤ k ≤ n − 1 can be written as required by the problem. Then, using Lemma 6.2 again,
note that

(23)(12)(23) = (13) = (τστ−1)σ(τστ−1)

(34)(13)(34) = (14) = (τ2στ−2)(τστ−1)σ(τστ−1)(τ2στ−2)

and similarly, all of the “special transpositions” (1i) from Exercise 6.26 can be written as
products of powers of σ and τ . It follows from Exercise 6.26, then, that every ρ ∈ Sn can
be written in this way too.

Proof 2a: A second way to derive the same conclusion (using Exercise 6.26 in a similar
way), is to alternate conjugating 2-cycles and n-cycles, like the following: We have, by
Lemma 6.2,

στσ−1 = (2134 · · ·n) = τ2

τ2στ
−1
2 = (31) = (13)

(13)τ2(13) = (2314 · · ·n) = τ3

τ3(13)τ
−1
3 = (41) = (14)

and continuing in the same way, we get all the (1i) with 2 ≤ i ≤ n as products of powers
of σ and τ .
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Proof 2b: Proof 2a can also be phrased as an argument by induction as follows. We want
to show that in Sn, all of the “special” transpositions (1i) for 2 ≤ i ≤ n can be obtained
as products of powers of σ and τ . The base case is i = 2 and there is nothing to prove
since σ = (12). So now let’s assume that we have shown (12), (13), . . . , (1k) can be written
this way. Consider (1 k + 1). Then, following what we did in Proof 2a, we consider the
product giving the element we called τk above:

τk = (1k)(1 k − 1) · · · (13)(12)τ(12)(13) · · ·(1 k − 1)(1k)

By Lemma 6.2, since the product on the right of τ is the inverse of the product on the left
of τ , this equals

τk = (2 3 4 · · · k 1 k + 1 k + 2 · · · n).

(In the n-cycle τ , we’re transposing the 1 and the 2, then the 1 and the 3, etc. up to the 1
and the k, so 2, 3, . . . , k all end up to the left of 1, and the remaining numbers k+1, . . . , n
have not moved.) By Lemma 6.2 yet again, then

τk(1k)τ
−1
k = (k + 1 1) = (1 k + 1)

is a product of powers of τ and σ, since τk and (1k) are such products (that’s the induction
hypothesis) and this finishes the proof.

7.8. We want to show that if a is odd order, then C(a) = C(a4). We’ll set this up as a
proof showing each of these sets is contained in the other.

⊆: Let g ∈ C(a). Then ga = ag, so

ga4 = (ga)a3 = (ag)a3 = a(ga)a2 = a(ag)a2 = a2(ga)a = a3ga = a4g.

Hence g ∈ C(a4), so C(a) ⊆ C(a4). (Note: We don’t need the hypothesis that a has odd
order for this inclusion.)

⊇: Now let g ∈ C(a4). By definition this means ga4 = a4g. We have to show this implies
ga = ag when |a| is odd. Let k = |a|. Then by integer division we have k = 4q + r with
0 ≤ r < 4. But note r = 0, 2 are not possible, since then k would be even. This says there
are two possible values for r, namely r = 1 and r = 3. We handle each of those cases
separately.

If r = 1, then a4q+1 = e, so a = a−4q. Note that a−4q = (a4)−q. Since we have ga4 = a4g,
we also have a−4g = ga−4 by multiplying both sides of the previous equation by a−4 on
the left and the right. It follows that ga−4q = a−4qg for all integers q. Hence

ga = ga−4q = a−4qg = ag

and g ∈ C(a). This shows C(a4) ⊆ C(a) when |a| = 4q + 1.

If r = 3, then a4q+3 = e, so a = a4(q+1). Note that a4(q+1) = (a4)q+1. If g ∈ C(a4), then
it follows that ga4(q+1) = a4(q+1)g. Hence

ga = ga4(q+1) = a4(q+1)g = ag

and g ∈ C(a). This shows C(a4) ⊆ C(a) when |a| = 4q + 3 as well.
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