MATH 351 - Modern Algebra I

Selected Solutions for Problem Set 9
November 30, 2018
6.26. By Theorem 6.6 in Lee, we know that every $\sigma \in S_{n}$ is a product of transpositions, but those transpositions can contain any of the ($a b$), with $1 \leq a<b \leq n$. On the other hand, by Lemma 6.2, we know that

$$
(1 a)(1 b)(1 a)=(1 a)(1 b)(1 a)^{-1}=(a b) .
$$

Hence in any factorization of σ into transpositions, we can replace any transposition (ab) with $a, b \neq 1$ by the product $(1 a)(1 b)(1 a)$ as above. This shows that every $\sigma \in S_{n}$ can be written as a product of the "special" transpositions (1i) with $2 \leq i \leq n$.
6.28. There are many different proofs of this fact. Let's look at two, both of which are based on Exercise 6.26 above.

Proof 1: (This one might be the "slickest".) Letting $\sigma=(12)$ and $\tau=(12 \cdots n)$ as in the problem statement, note that Lemma 6.2 implies:

$$
\begin{aligned}
\tau \sigma \tau^{-1} & =(23) \\
\tau(23) \tau^{-1} & =\tau^{2} \sigma \tau^{-2}=(34) \\
\tau(34) \tau^{-1} & =\tau^{3} \sigma \tau^{-3}=(45),
\end{aligned}
$$

and hence, continuing in the same way every "consecutive" transposition $(k k+1)$ with $1 \leq k \leq n-1$ can be written as required by the problem. Then, using Lemma 6.2 again, note that

$$
\begin{aligned}
& (23)(12)(23)=(13)=\left(\tau \sigma \tau^{-1}\right) \sigma\left(\tau \sigma \tau^{-1}\right) \\
& (34)(13)(34)=(14)=\left(\tau^{2} \sigma \tau^{-2}\right)\left(\tau \sigma \tau^{-1}\right) \sigma\left(\tau \sigma \tau^{-1}\right)\left(\tau^{2} \sigma \tau^{-2}\right)
\end{aligned}
$$

and similarly, all of the "special transpositions" ($1 i$) from Exercise 6.26 can be written as products of powers of σ and τ. It follows from Exercise 6.26, then, that every $\rho \in S_{n}$ can be written in this way too.

Proof 2a: A second way to derive the same conclusion (using Exercise 6.26 in a similar way), is to alternate conjugating 2 -cycles and n-cycles, like the following: We have, by Lemma 6.2,

$$
\begin{aligned}
\sigma \tau \sigma^{-1} & =(2134 \cdots n)=\tau_{2} \\
\tau_{2} \sigma \tau_{2}^{-1} & =(31)=(13) \\
(13) \tau_{2}(13) & =(2314 \cdots n)=\tau_{3} \\
\tau_{3}(13) \tau_{3}^{-1} & =(41)=(14)
\end{aligned}
$$

and continuing in the same way, we get all the (1i) with $2 \leq i \leq n$ as products of powers of σ and τ.

Proof 2b: Proof 2a can also be phrased as an argument by induction as follows. We want to show that in S_{n}, all of the "special" transpositions (1i) for $2 \leq i \leq n$ can be obtained as products of powers of σ and τ. The base case is $i=2$ and there is nothing to prove since $\sigma=(12)$. So now let's assume that we have shown (12), (13), .., (1k) can be written this way. Consider $(1 k+1)$. Then, following what we did in Proof 2a, we consider the product giving the element we called τ_{k} above:

$$
\tau_{k}=(1 k)(1 k-1) \cdots(13)(12) \tau(12)(13) \cdots(1 k-1)(1 k)
$$

By Lemma 6.2, since the product on the right of τ is the inverse of the product on the left of τ, this equals

$$
\tau_{k}=(234 \cdots k 1 k+1 k+2 \cdots n)
$$

(In the n-cycle τ, we're transposing the 1 and the 2 , then the 1 and the 3 , etc. up to the 1 and the k, so $2,3, \ldots, k$ all end up to the left of 1 , and the remaining numbers $k+1, \ldots, n$ have not moved.) By Lemma 6.2 yet again, then

$$
\tau_{k}(1 k) \tau_{k}^{-1}=(k+11)=(1 k+1)
$$

is a product of powers of τ and σ, since τ_{k} and ($1 k$) are such products (that's the induction hypothesis) and this finishes the proof.
7.8. We want to show that if a is odd order, then $C(a)=C\left(a^{4}\right)$. We'll set this up as a proof showing each of these sets is contained in the other.
\subseteq : Let $g \in C(a)$. Then $g a=a g$, so

$$
g a^{4}=(g a) a^{3}=(a g) a^{3}=a(g a) a^{2}=a(a g) a^{2}=a^{2}(g a) a=a^{3} g a=a^{4} g .
$$

Hence $g \in C\left(a^{4}\right)$, so $C(a) \subseteq C\left(a^{4}\right)$. (Note: We don't need the hypothesis that a has odd order for this inclusion.)
?: Now let $g \in C\left(a^{4}\right)$. By definition this means $g a^{4}=a^{4} g$. We have to show this implies $g a=a g$ when $|a|$ is odd. Let $k=|a|$. Then by integer division we have $k=4 q+r$ with $0 \leq r<4$. But note $r=0,2$ are not possible, since then k would be even. This says there are two possible values for r, namely $r=1$ and $r=3$. We handle each of those cases separately.

If $r=1$, then $a^{4 q+1}=e$, so $a=a^{-4 q}$. Note that $a^{-4 q}=\left(a^{4}\right)^{-q}$. Since we have $g a^{4}=a^{4} g$, we also have $a^{-4} g=g a^{-4}$ by multiplying both sides of the previous equation by a^{-4} on the left and the right. It follows that $g a^{-4 q}=a^{-4 q} g$ for all integers q. Hence

$$
g a=g a^{-4 q}=a^{-4 q} g=a g
$$

and $g \in C(a)$. This shows $C\left(a^{4}\right) \subseteq C(a)$ when $|a|=4 q+1$.
If $r=3$, then $a^{4 q+3}=e$, so $a=a^{4(q+1)}$. Note that $a^{4(q+1)}=\left(a^{4}\right)^{q+1}$. If $g \in C\left(a^{4}\right)$, then it follows that $g a^{4(q+1)}=a^{4(q+1)} g$. Hence

$$
g a=g a^{4(q+1)}=a^{4(q+1)} g=a g
$$

and $g \in C(a)$. This shows $C\left(a^{4}\right) \subseteq C(a)$ when $|a|=4 q+3$ as well.

