MATH 351 - Modern Algebra I

 Selected Solutions for Problem Set 10December 7, 2018
7.18. Let G be an infinite group and let H be the subset of G consisting of the elements with only finitely many conjugates. Equivalently H is the subset of $a \in G$ such that $\left|C_{a}\right|$ is finite. We have to show that H is a subgroup of G.

- First, we consider e. For all $g \in G, g e g^{-1}=e$. Therefore $C_{e}=\{e\}$ and $\left|C_{e}\right|=1$. Since this is finite, $e \in H$.
- Now let $a, b \in H$ and consider $C_{a b}$. For all $g \in G$, we have using associativity

$$
g a b g^{-1}=g a\left(g^{-1} g\right) b g=\left(g a g^{-1}\right)\left(g b g^{-1}\right)
$$

The factor on the left is an element of C_{a} and the factor on the right is an element of C_{b}. Hence when we form these products, we obtain at most $\left|C_{a}\right| \cdot\left|C_{b}\right|$ different elements of G. There could be also strictly fewer than $\left|C_{a}\right| \cdot\left|C_{b}\right|$ in some cases, but in any case, the number $\left|C_{a b}\right|$ is finite. This shows $a b \in H$.

- Now let $a \in H$ and consider $\left|C_{a^{-1}}\right|$. The elements of this class all have the form $g a^{-1} g^{-1}$ for $g \in G$. Note that the inverse of this element of G is

$$
\left(g a^{-1} g^{-1}\right)^{-1}=g a g^{-1}
$$

which is one of the elements of $\left|C_{a}\right|$. Since we began by assuming $a \in H$, there are only finitely many different values obtained for gag^{-1}. That implies there are only finitely many conjugates of a^{-1} too since each element of G has a unique inverse in G. That shows $a^{-1} \in H$.

Putting together these three points, we get that H is a subgroup of G.
7.24. Most people saw correctly that you want to use Sylow II to say that any two Sylow 2-subgroups H_{1} and H_{2} must be conjugate. But then we must say why (or prove directly that) if $H_{2}=g H_{1} g^{-1}$ for two subgroups H_{1}, H_{2} of G and some element $g \in G$, then H_{1} and H_{2} must be isomorphic as groups. Here's how to show that. Consider the conjugation mapping α :

$$
\begin{aligned}
\alpha: H_{1} & \rightarrow H_{2} \\
h & \mapsto g h g^{-1}
\end{aligned}
$$

We claim that α is an isomorphism. First, it is a group homomorphism because if $h, k \in H_{1}$, then

$$
\alpha(h k)=g h k g^{-1}=g h\left(g^{-1} g\right) h g^{-1}=\left(g h g^{-1}\right)\left(g k g^{-1}\right)=\alpha(h) \alpha(k) .
$$

The mapping α is surjective with image H_{2} by Sylow II. Moreover, since $\left|H_{1}\right|=p^{n}=\left|H_{2}\right|$ if $|G|=p^{n} r$ with $\operatorname{gcd}(p, r)=1$, once we know α is surjective, then α must be injective as well. Hence α is an isomorphism of groups.

But this shows that it is impossible for one Sylow 2-subgroup $H_{1} \cong \mathbf{Z}_{4}$ and another Sylow 2-subgroup $H_{2} \cong \mathbf{Z}_{2} \times \mathbf{Z}_{2}$. The groups \mathbf{Z}_{4} and $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ are not isomorphic, by the fundamental theorem of finite abelian groups.
7.30. Let $|G|=56=2^{3} \cdot 7$. We claim that G must have a normal subgroup other than $\{e\}$ and G, so G is not simple. Let $p=7$. By Sylow III, the number of Sylow 7 -subgroups is $\equiv 1 \bmod 7$ and that number divides 8 . Thus both 1 and 8 Sylow 7 -subgroups are possible. If there is just one, then as usual, Sylow II implies that subgroup is normal and we are done. On the other hand, if there are 8 Sylow 7 -subgroups in G, each of order $=7$, then since 7 is prime, each of the Sylow 7 -subgroups is cyclic and there are 6 elements of order 7 in each of them. Distinct Sylow 7 -subgroups can only intersect in the identity element. Counting up the total number of elements in the union of those subgroups we get $1+8 \cdot 6=49$. This leaves only 7 other elements of G, and those 7 elements together with e make up exactly one subgroup of order 8 by Sylow I (there exists at least one subgroup with $2^{3}=8$ elements, but there is no room for more than one in this case(!)). Hence if there are 8 Sylow 7 -subgroups, there must be only one Sylow 2 -subgroup, hence that Sylow 2 -subgroup is normal by Sylow II. Hence G is not simple in this case either.

