Mathematics 351 — Abstract Algebra I
Solutions for Midterm Exam 2 — November 14, 2007

I. Terminology.

A)

Let G be a group and n be an integer. What does it mean to say that |g| = n for
g € G?

Solution: |g| is the order of the element g. This is, by definition, the smallest positive
integer such that ¢" = e (the identity element in G).

Let I be an ideal in a ring R. What does it mean to say that « = b mod I?

Solution: This equivalent to saying a — b € 1.

Give an example of an ideal in a ring R that is prime but not maximal.

Solution: One such example is the ideal P = {(a,0) : « € Z} in R = Z x Z. The

quotient ring R/P is isomorphic to Z, which is an integral domain but not a field.
Hence P is a prime ideal, but not a maximal ideal.

IT. Let R be the ring of functions f : R — R that have derivatives of all orders. Show that
I={fe€R:f(0)=f'(0)=0}is an ideal in R.

Solution: I is clearly nonempty since it contains the zero function, f(z) = z?, etc. Let
f,9 € I'so £(0) = £/(0) = 0 and g(0) = ¢'(0) = 0. Then (f — g)(0) = £(0) — g(0) = 0
and (f —¢)'(0) = f'(0) — ¢’(0) =0 — 0 = 0 (by the sum rule for derivatives). Hence
f—g €l Next,let f €I, and let g be any function in R. Since R is a commutative
ring, we only need to check that fg € I. But (fg)(0) = f(0)g(0) = 0-¢(0) = 0.
Moreover, by the product rule for derivatives,

(f9)'(0) = f'(0)g(0) + f(0)g’(0) = 0-g(0) +0-¢'(0) = 0.

Hence fg € I.

II1. All parts of this problem refer to p(z) = 2% + z in Zy[z].

A)

How many distinct cosets of the ideal (p(x)) are there in Zs[x]?



Solution: Since Zy is a field, we have a division algorithm in the polynomial ring
Zs|z], and by our general results in this situation, the distinct cosets of (p(z)) are in
one-to-one correspondence with the possible remainders on division by p(x). Since p(z)
has degree 2, these remainders are all the polynomials of degree 1 or less in Zs[z] (and
the zero polynomial): 0,1, z,x + 1. There are 4 distinct cosets:

0+ (p(x)), 1+ (p(x)), 2 + (p(z)), = + 1+ (p(z)).
Construct the coset addition and multiplication tables for the quotient ring Zsy[z]/(p(x)).

Solution: The addition table (omitting the +(p(z)) in the description of the cosets for
simplicity):

+ 0 1 T z+1
0 0 1 x z+1
1 1 0 z+1 T
T T z+1 0 1
z+1 z+1 T 1 0
The multiplication table is:

: 0 1 z r+1

0 0 0 0 0

1 0 1 z r+1

T 0 T T 0

z+1 0O z+1 0 z+1

State and prove the First Isomorphism Theorem for rings.

Solution: The First Isomorphism states that if f : R — S is a ring homomorphism,
then im(f) ~ R/ ker(f). To prove this, we write K = ker(f) and consider the mapping
¢ : R/K — im(f) defined by ¢(a + K) = f(a). This is well-defined since if a + K =
b+ K, then a — b € K, so f(a —b) =0, which shows f(a) = f(b). Hence ¢(a + K) =
¢(b+ K). Next, we show that ¢ is a ring homomorphism. Let ¢ + K and b + K
be elements of R/K. Then ¢((a+ K)+ (b+ K)) = ¢((a+b) + K) = f(a+b) =
fla)+ f(b) = ¢la+ K)+ ¢(b+ K). Similarly, ¢((a+ K) - (b+ K)) = ¢((a-b) + K) =
fla-b)= f(a)- f(b) =d(a+ K) - ¢(b+ K). (We are using the definition of the coset
sum and product operations and the fact that f is a ring homomorphism here. Now, ¢
is onto im(f) by definition. Every element of im(f) is of the form f(a) for some a € R.
Hence f(a) = ¢(a + K). Finally, ¢ is one-to-one since if ¢(a + K) = ¢(b+ K), then
f(a) = f(b) which implies f(a —b) =0soa—b € K, and hence a + K = b+ K.



D)

Let Zy X Zy = {(a,b) : a,b € Zy}, a ring under the component-wise sum and product
operations. Show that f : Zy[x] — Zy X Zo defined by f(g(z)) = (g(0), (1)) is a ring
homomorphism and determine ker(f).

Solution: f is a ring homomorphism because

fg(z)+h(x)) = (9(0)+h(0), g(1)+Ah(1)) = (9(0), 9(1))+(R(0), h(1)) = f(g(z))+f (h(z))

and

f(g(z) - h(z)) = (9(0) - h(0), g(1) - h(1)) = (9(0), g(1)) - (~(0), h(1)) = f(g(z)) - f(h(x))-

The kernel of f consists of all polynomials g(z) € Zs|x] such that g(0) = 0 and g(1) = 0.
This means that = and (z + 1) must divide g, so g(z) € (p(z)) = (z(x + 1)). On the
other hand every polynomial in (p(z)) is clearly in ker(f) since such polynomials are
zero at x = 0 and = = 1. Hence ker(f) = (p(x)).

Deduce that Zs[z]/(p(z)) is isomorphic as a ring to Zgy X Zs.

Solution: This follows from part D by the First Isomorphism Theorem. Let f be as
in part D. The image of f is all of Zy X Zs, so that is isomorphic to Zy[x]/ ker(f) and
ker(f) = (p(x)). Comment: It is also possible to see this by comparing the addition and
multiplication tables for the two rings. But it is necessary then to be somewhat careful
in defining the correspondence between the elements. For example, the “obvious”

mapping

0+ (p(z)) — (0,0)
1+ (p(z)) = (1,0)
z+ (p(x)) = (0,1)
z+14+(p(z)) — (1,1)

is an isomorphism of the additive groups of the two rings, but not an isomorphism
of rings — note that the multiplicative identity in Zs[z]/(p(x)) is 1 + (p(z)), but the
multiplicative identity in Zg X Zs is (1,1). A ring isomorphism would have to map the
multiplicative identity to the multiplicative identity, so a correct mapping to get a ring
isomorphism here is:

1111



This is the mapping obtained from f from part D by the proof of the First Isomorphism
Theorem(!) There is also another correct way to do this by mapping

0+ (p(z)) = (0,0)
L+ (p(z) — (1,1)
z+(p(x)) — (1,0)

(p(z)) = (0,1)

IV. Let G = {4,8,12,16} C Zq. Is G a group under multiplication mod 207 If so, say why
and determine if G is cyclic. If not, identify which of the group axioms fail.

Solution: G is a group under multiplication mod 20, as can be seen from the operation

table
4 8 12 16

4 16 12 8 4
8 12 4 16 8
12 8§ 16 4 12
16 4 8 12 16

We see 16 is an identity for multiplication, every element has an inverse (that is, for
each u, there is some v such that uv = 16), and associativity follows from associativity
of multiplication in Zsy. The group G is cyclic, since the powers of 8 generate all the
elements: 8' = 8, 82 =4, 8% =12, 8* = 16.

State Lagrange’s Theorem for groups.

Solution: Lagrange’s Theorem says that if G is a finite group and H is a subgroup of
G, then |H| divides |G/|. In particular, |G| =[G : H]|H|.

Let G be a group of order 60. Is it possible for G to contain elements a,b with |a| = 3
and aba™! = b*? Why or why not?

Solution: There certainly can be such elements. Note for instance that a cyclic group
of order 60 generated by ¢ will contain elements a = ¢*® and b = ¢*°, both of order 3.
Then aba~' = baa™! = b = b* since a and b commute and b also has order 3.



