Mathematics 351 — Abstract Algebra I
Solutions for Midterm Exam 1 — October 1, 2007

I. Terminology.
A) (5) Give an example of a ring R that is not a commutative ring.

Solution: The ring of 2 X 2 matrices with real entries, Msyx2(R), is one example.
B) (5) What does it mean to say that R is a ring with identity?

Solution: R is a ring with identity if there is a multiplicative identity in R: an element
1g satisfying 1g-a=a-1g = a for all a € R.

C) (5) What does it mean to say that u € R is a unit?

Solution: u is a unit if u has a multiplicative inverse in R (an element x such that
u-x = 1lp = = - u. Note that this only makes sense if R is a ring with identity(!)

D) (5) Is every commutative ring with identity an integral domain? If so, say why. If not,
give a counterexample.

Solution: The answer is no. The ring Zg is a commutative ring with identity, but it
is not an integral domain, since for instance, [2][3] = 0, but [2] # [0] and [3] # [0].

II. Let R be a ring. Let b be any one particular element of R, and let
Ch={a€cR:a-b=0b-a}.
A) (10) Show that Cp is a subring of R.
Solution: We use the criterion from Theorem 3.6 in Hungerford. First notice that Cy
is not empty, since Og -b=b-0r = Og. Hence O € Cy. Let a,a’ € Cy. Then by the
distributive law

(a—ad)-b=a-b—d -b=b-a—b-a' =b-(a—a).

This shows a —a’ € Cy so Cy is closed under differences. Similarly by associativity of
multiplication,

(a-a'y-b=a-(a'-b)=a-(b-a)=(a-b)-a'=((b-a)-a’ =b-(a-a).
Hence C} is also closed under products, and hence is a subring of R.

B) (10) Let S be a second ring, and let ¢ : R — S be a ring homomorphism. Show that
if b € R, then (,O(Cb) C C(p(b) C S.



Solution: Let a € Cp, s0 a-b =b-a. By the definition of a ring homomorphism,

p(a)-p(b) =p(a-b)=p(b-a) =) pa).

This shows ¢(a) € Cy). Hence ¢(Cp) C Cypy-

III. Let F[z] be the ring of polynomials with coefficients in a field F'.

A)

C)

IV.

B)

(10) Show that the quotient and remainder under the division of f(z) by g(z) in F[z]
are unique.

Solution: Suppose f(z) = q(x)g(z) + r(z) and f(z) = ¢1(x)g(z) + r1(x), where both
r(z) and 71(x) are either zero or have degree less than the degree of g(x). Then
subtracting these equations shows 0 = (¢(z) — ¢1(z))g(z) + r(z) — r1(x), so r(x) —
ri(z) = (@1(z) — q(z))g(x). If r(x) — r1(x) # 0, then it is a polynomial of degree <

deg(g). However, deg((q1(z) —q(z))g(x)) = deg(q1(x) —q(x))+deg(g(z)) = deg(g())-
This gives a contradiction, so r(z) = r1(z) and ¢(z) = ¢1(z).

(5) Define: f(z) is irreducible in F|x].

Solution: f(z) is irreducible if in every factorization f(z) = g(z)h(x) in F[x], one of
g(z), h(x) is a unit (a nonzero constant polynomial), and the other is an associate of

f ().

(10) In what sense are factorizations of polynomials into irreducibles unique? (State
the theorem that answers this question; you do not need to prove it.)

Solution: The sense in which irreducible factorizations are unique in F[z] is that if

f@)=pi(z)---ps(x) and  qi(z)---gs(z),

where all the p;(x) and ¢;(x) are irreducible in F[z], then r = s, and for each 1 < ¢ < s,
there exists some j such that p;(z) and ¢;(x) are associates.

(10) Let F' be a field. Show that a € F is a root of f(x) € F|z| if and only if
(x —a)|f(z) in Flz].

Solution: Use the division algorithm in F[z], dividing z — a into f(x) to write f(z) =
q(z)(z — a) + r(x), where either r is zero, or else deg(r) < deg(z —a) =1. Ifa € F
is a root of f(z), then 0 = f(a) = g(a)(a — a) + r, so r = 0. This shows (z — a)|f(z).
Conversely, if (z — a)|f(z), then 7 = 0, so f(a) = ¢(a)(a —a) = 0, so a is a root of
().

(10) Let F be a field. If aq,...,a, are distinct roots of f(z) € F[z] in F, show that
((x —a1)(x—az) - (x —ayn))|f(z). (Hint: induction on n).



Solution: Following the hint, part A is the base case for the induction. So assume
that whenever a polynomial ¢g(z) in F|z] has k distinct roots aq,...,ag, then ((x —
ai) - -+ (x — ag))|g(z). Assume now that f(x) is a polynomial with k& + 1 distinct
roots in F, say ai,...,ax+1. By part A, we know that (z — agy1)|f(z) so write

(1) fl@)=(z—-a)----- (z — ax))q(z)
for some q(z) € F[z]. If we substitute x = a;, for any i, 1 < i < k, then 0 = f(a;) =
(a; — ag+1)g(a;). The first factor cannot be zero since the a;’s are distinct. Hence

¢(z) must have ay,...,ax as roots, and by induction ((z — ay) - ---- (z — ag))|g(x).
This means

(2) g(z) = ((z —a1)----- (z — ax))s(z)

for some s(z) € F[z]. Hence combining (1) and (2),

fx) = (z —ap1)((2 —a1) -~ (z —ax))s(z)
which shows what we wanted to prove.

C) (5) What are the roots of 22 +2x € Zg|x] in Zg? Why is your result not a contradiction
to part B?

Solution: © = 0,2,4,6 all satisfy 2 + 2z = 0 in Zg. This is not a contradiction to
part B since Zg is not a field. The statement in part B does not apply.

V. All parts of this question refer to
f(z) = 52° — 122° + 362% + 18 € Q]z].

A) (5) List all rational numbers that could be roots of f according to the Rational Root
Test.

Solution: The possible rational roots of f(x) are all rational numbers in lowest terms
of the form p/q, where p|18 and ¢|5, so:

==41,+2,4+3,4+6,+£9,+18 :I:1 :l:2 :I:3 :l:6 :I:12 :I:18
xr = I ) I ) ) I 57 57 57 57 5a 5

B) (5) Use any applicable method to decide whether f is irreducible in Q[z], and state

which criterion or criteria you are using.

Solution: By the Eisenstein Criterion with p = 2, f(x) is irreducible in Q[z]: 2 [ 5,
2/(—12),2/36, 2|18, but 22 = 4 / 18.



