Mathematics 352 — Abstract Algebra II
Midterm Exam 1 Solutions — February 27, 2008

I. Terminology.

A)

II.

(5) Let G be a group and let z in G. What is the conjugacy class of z in G?

Solution: The conjugacy class of z is
Co={9g7'zgcG:9€G}.
(In other words, this is the equivalence class of z for the conjugacy relation on G.)

(5) Let K be an extension field of the field F' and let v € K. What does it mean to say that
u is transcendental over F'?

Solution: The element u € K is transcendental over F' if there is no nonzero polynomial
f(z) € F[z] such that f(u) =0 (or, equivalently, that u is not algebraic over F.)

. C) (5) Let K be an extension field of the field F. What does it mean to say that K is normal

over F'?

Solution: K is a normal extension of F' if K is algebraic over F' and if p(z) is an irreducible
polynomial with one root in K, then p(z) splits completely in K[z] (that is, in K[z],

p(z) = c(x —u1)...(z — up),

so all the roots of p(z) are in K.)

(10) State the Structure Theorem for finite abelian groups.

Solution: Every finite abelian group is a direct sum of cyclic subgroups of prime power order.

(10) Let G = Z4o ® Z3e @ Zga. What are the elementary divisors and invariant factors of G7

Solution: From the factorizations 42 = 2-3-7, 36 = 22- 32, and 84 = 22 .3 .7, we see that
the elementary divisors of G are 2,4,4,3,3,32,7,7, so

Golo®Dly DLy Dl D Lz® Zg® Ly D L.
Regrouping these as usual, we see the invariant factors of G are 6, 84,252, so that

G ~ Ze ® Zgs ® ZLaso.



C) (5) What is the Sylow 7-subgroup of G from part B? Is this a cyclic group?

I11.

Solution: The Sylow 7-subgroup is isomorphic to Z7@ Zy from the decompositions above. 1t is
not cyclic. If we take the original direct sum decomposition G = Z19®Z3sBZgs = (a) B (b)D(c)
then the Sylow 7-subgroup is generated by (a®,0,0) and (0,0, c?) (two elements of order 7).

. A) (20) State and prove the First Sylow Theorem for finite groups.

Solution: The First Sylow Theorem states that if G is a finite group and p is a prime number
such that p™||G|, then G contains a subgroup of order p”.

The proof is by induction on |G|. When |G| = 1, there is nothing to prove. So now for the
induction step, assume that the statement of the theorem is true for all groups of order < m
and consider G of order m. By the Class Equation, we have

t
G| = Z(G)| + > _[G : C(gs)],

1=1

where the g; are representatives of the distinct conjugacy classes of size > 1 and C(g;) is the
centralizer of g;.

Case 1: Assume that there is some 7 such that [G : C(g;)] is not divisible by p. Then p"||C(g:)]-
We must have |C(gi)| < |G| since g; ¢ Z(G). Therefore, by the induction hypothesis, C(g;)
has a subgroup of order p™. This subgroup is also a subgroup of G and we are done in this
case.

Case 2: Now assume that p|[G : C(g;)] for all ¢ = 1,...,¢. Then since p||G|, we also have
p||Z(G)|. Now Z(QG) is a finite abelian group, so we know by a consequence of the Structure
Theorem that Z(G) contains an element z of order p. Let C' = (z) be the subgroup generated
by this z. Since C C Z(G), C is normal in G and we can form G/C which has order divisible
by p"~!. By the induction hypothesis applied to G/C, G/C has a subgroup H of order p"~!.
But then the inverse image of H under the quotient map G — G/C is a subgroup of G of
order p".

(10) Use the Sylow Theorems to show that every group of order 33 is cyclic.

Solution: By the Third Sylow Theorem, the number of Sylow 3-subgroups is congruent to 1
mod 3 and divides 33. The only possibility is 1, so let H be the unique Sylow 3-subgroup.
Similarly, there is exactly one Sylow 11-subgroup K. This implies that H and K are normal
subgroups. Moreover H N K = {e}, since if not any = # e would simultaneously have order 3
and order 11, which is impossible. Therefore, G ~ H x K ~ Z3 X Z11 ~ Z33, where the last
isomorphism follows because (3,11) = 1.



IV.
A)

(5) Let K be an extension field of F, and let u € K. Show that if u? is algebraic over F, then
u is also algebraic over F.

Solution: (Method 1) If u? is algebraic over F, then there is some nonzero polynomial p(z) €
F[z] such that p(u?) = 0. This implies that the polynomial ¢(z) = p(z?) has u as a root.
Therefore u is also algebraic over F. (Note: If p(z) = apz™+- - -+a1 +ao, then the polynomial
q(z) is just ¢(z) = apz®™ + -+ + @17 + ay.)

Solution: (Method 2) Since u? is algebraic over F, we know that [F(u?) : F] = n, the degree of
the minimal polynomial of u? in F[z]. Now consider the polynomial z? —u? € F(u?)[z]. This
has u as a root, so u is algebraic over F(u?), and [F(u?)(u) : F(u?)] = [F(u) : F(u?)] < 2.
Therefore [F(u) : F] = [F(u) : F(u?)][F(u?) : F] < 2n is finite, which implies that u is
algebraic over F.

(10) Show that Q(v/2,v/3) is a splitting field of f(z) = z* + 22> — 822 — 62 — 1 over Q. (Hint:
Look for quadratic factors of f(z).)

Solution: The factorization of f(z) in Qz] is f(z) = (2% + 4z + 1)(z%2 — 2z — 1). The
roots of the first factor are z = —2=V16-12 W = —2 4 /3. The roots of the second factor are
¢ = 25/ V24+4 = 1+ /2. Hence the splitting field of f(z) over Q is, by definition,

K=0Q(-2++3,-2-3,1+v2,1-2).

We claim that K :_Q(\/ 2,4/3). The inclusion K C Q(v/2,1/3) is clear since each root of f
is contained in Q(+v/2,+/3). The other inclusion follows since v2 = (1 + v2) + (1 — v2)

and v/3 = %(—2 +3) + _71(—2 —/3) are both in K. So Q(+/2,v/3) C K.

V. (15) Show that if F C E C K are field extensions and [E : F|,[K : E|] are both finite, then
[K:F)=[K:E|E:F).

Solution: Say {ui,...,un} is a basis for E over F' and {vi,...,v,} is a basis for K over F.
Then each element a in K can be written as

a=cv1+-+cpv,

for some ¢; € E. Similarly, we have ¢; = a;1u1 + -+ + @iy, Were a;; € F. Substituting into the
last displayed equation,

a = (a11ur + -+ a1pup)vr + -+ (@p1ur + -+ GpmUm)vp
n m
= E E Qi ViU; -
i=1 j=1



This shows that the m - n elements v;u; for =1,...,n and j = 1,...,m span K over F. To show
that these form a basis of K over F, we need to show that they are linearly independent. Suppose
there are a;; € F' such that

nom
0 = E E aijviuj

i=1 j=1
= (a11u1 + -+ a1mUm)vr + - - + (@piut + - + G lm) Vn.

Since the v; are linearly independent over F, this shows that
aj1u1 + -+ iy, =0

for all i = 1,...,n. But then, the u; are linearly independent over F, so all a;; = 0. This shows
the linear independence so {vjui :1<i<n,1<j<m}isa basis of K over F' and

[K:F]=m-n=[F:F|K:E|

Eztra Credit (10) Let p(z) and ¢(z) be irreducible polynomials in F[z] such that degp(x) and
deg q(x) are relatively prime integers. Show that if u is a root of p(x) in some extension field of F,
then ¢(z) is also irreducible in F(u)[z].

Solution: If u is a root of p(z) in some extension field of F, then by Theorem 10.7, [F(u) :
F] = degp(z) = m. Similarly if v is a root of ¢(z), we have [F(v) : F] = degq(z) = n. Since
m = degp(z) and n = degq(x) are relatively prime, it follows as in Exercise 11 from Section
10.3 of Hungerford that [F(u,v) : F] = mn. From the tower F C F(u) C F(u,v), we get
[F(u,v) : F] = mn = [F(u,v) : F(u)][F(u) : F], so [F(u,v) : F(u)] = n. This says that the
minimal polynomial of v over F'(u) must have degree n, and it must be a divisor of g(x). Since

q(x) has degree n itself, that minimal polynomial must be ¢(z), and hence g(z) is still irreducible
in F(u)[z].



