Mathematics 352 – Abstract Algebra II Midterm Exam 1 Solutions – February 27, 2008

I. Terminology.

A) (5) Let G be a group and let x in G. What is the *conjugacy class* of x in G?

Solution: The conjugacy class of x is

$$C_x = \{g^{-1}xg \in G : g \in G\}.$$

(In other words, this is the equivalence class of x for the conjugacy relation on G.)

B) (5) Let K be an extension field of the field F and let $u \in K$. What does it mean to say that u is transcendental over F?

Solution: The element $u \in K$ is transcendental over F if there is no nonzero polynomial $f(x) \in F[x]$ such that f(u) = 0 (or, equivalently, that u is not algebraic over F.)

1. C) (5) Let K be an extension field of the field F. What does it mean to say that K is normal over F?

Solution: K is a normal extension of F if K is algebraic over F and if p(x) is an irreducible polynomial with one root in K, then p(x) splits completely in K[x] (that is, in K[x],

$$p(x) = c(x - u_1) \dots (x - u_n),$$

so all the roots of p(x) are in K.)

II.

A) (10) State the Structure Theorem for finite abelian groups.

Solution: Every finite abelian group is a direct sum of cyclic subgroups of prime power order.

B) (10) Let $G = \mathbb{Z}_{42} \oplus \mathbb{Z}_{36} \oplus \mathbb{Z}_{84}$. What are the elementary divisors and invariant factors of G?

Solution: From the factorizations $42 = 2 \cdot 3 \cdot 7$, $36 = 2^2 \cdot 3^2$, and $84 = 2^2 \cdot 3 \cdot 7$, we see that the elementary divisors of G are $2, 4, 4, 3, 3, 3^2, 7, 7$, so

$$G \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_7 \oplus \mathbb{Z}_7.$$

Regrouping these as usual, we see the invariant factors of G are 6, 84, 252, so that

$$G \simeq \mathbb{Z}_6 \oplus \mathbb{Z}_{84} \oplus \mathbb{Z}_{252}$$
.

C) (5) What is the Sylow 7-subgroup of G from part B? Is this a cyclic group?

Solution: The Sylow 7-subgroup is isomorphic to $\mathbb{Z}_7 \oplus \mathbb{Z}_7$ from the decompositions above. It is not cyclic. If we take the original direct sum decomposition $G = \mathbb{Z}_{42} \oplus \mathbb{Z}_{36} \oplus \mathbb{Z}_{84} = \langle a \rangle \oplus \langle b \rangle \oplus \langle c \rangle$ then the Sylow 7-subgroup is generated by $(a^6, 0, 0)$ and $(0, 0, c^{12})$ (two elements of order 7).

III.

1. A) (20) State and prove the First Sylow Theorem for finite groups.

Solution: The First Sylow Theorem states that if G is a finite group and p is a prime number such that $p^n||G|$, then G contains a subgroup of order p^n .

The proof is by induction on |G|. When |G| = 1, there is nothing to prove. So now for the induction step, assume that the statement of the theorem is true for all groups of order < m and consider G of order m. By the Class Equation, we have

$$|G| = |Z(G)| + \sum_{i=1}^{t} [G:C(g_i)],$$

where the g_i are representatives of the distinct conjugacy classes of size > 1 and $C(g_i)$ is the centralizer of g_i .

Case 1: Assume that there is some i such that $[G:C(g_i)]$ is not divisible by p. Then $p^n||C(g_i)|$. We must have $|C(g_i)| < |G|$ since $g_i \notin Z(G)$. Therefore, by the induction hypothesis, $C(g_i)$ has a subgroup of order p^n . This subgroup is also a subgroup of G and we are done in this case.

Case 2: Now assume that $p|[G:C(g_i)]$ for all $i=1,\ldots,t$. Then since p||G|, we also have p||Z(G)|. Now Z(G) is a finite abelian group, so we know by a consequence of the Structure Theorem that Z(G) contains an element x of order p. Let $C=\langle x\rangle$ be the subgroup generated by this x. Since $C\subseteq Z(G)$, C is normal in G and we can form G/C which has order divisible by p^{n-1} . By the induction hypothesis applied to G/C, G/C has a subgroup H of order p^{n-1} . But then the inverse image of H under the quotient map $G\longrightarrow G/C$ is a subgroup of G of order p^n .

B) (10) Use the Sylow Theorems to show that every group of order 33 is cyclic.

Solution: By the Third Sylow Theorem, the number of Sylow 3-subgroups is congruent to 1 mod 3 and divides 33. The only possibility is 1, so let H be the unique Sylow 3-subgroup. Similarly, there is exactly one Sylow 11-subgroup K. This implies that H and K are normal subgroups. Moreover $H \cap K = \{e\}$, since if not any $x \neq e$ would simultaneously have order 3 and order 11, which is impossible. Therefore, $G \simeq H \times K \simeq \mathbb{Z}_3 \times \mathbb{Z}_{11} \simeq Z_{33}$, where the last isomorphism follows because (3, 11) = 1.

IV.

A) (5) Let K be an extension field of F, and let $u \in K$. Show that if u^2 is algebraic over F, then u is also algebraic over F.

Solution: (Method 1) If u^2 is algebraic over F, then there is some nonzero polynomial $p(x) \in F[x]$ such that $p(u^2) = 0$. This implies that the polynomial $q(x) = p(x^2)$ has u as a root. Therefore u is also algebraic over F. (Note: If $p(x) = a_n x^n + \cdots + a_1 + a_0$, then the polynomial q(x) is just $q(x) = a_n x^{2n} + \cdots + a_1 x^2 + a_0$.)

Solution: (Method 2) Since u^2 is algebraic over F, we know that $[F(u^2):F]=n$, the degree of the minimal polynomial of u^2 in F[x]. Now consider the polynomial $x^2-u^2\in F(u^2)[x]$. This has u as a root, so u is algebraic over $F(u^2)$, and $[F(u^2)(u):F(u^2)]=[F(u):F(u^2)]\leq 2$. Therefore $[F(u):F]=[F(u):F(u^2)][F(u^2):F]\leq 2n$ is finite, which implies that u is algebraic over F.

B) (10) Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a splitting field of $f(x) = x^4 + 2x^3 - 8x^2 - 6x - 1$ over \mathbb{Q} . (Hint: Look for quadratic factors of f(x).)

Solution: The factorization of f(x) in $\mathbb{Q}[x]$ is $f(x) = (x^2 + 4x + 1)(x^2 - 2x - 1)$. The roots of the first factor are $x = \frac{-4 \pm \sqrt{16 - 12}}{2} = -2 \pm \sqrt{3}$. The roots of the second factor are $x = \frac{2 \pm \sqrt{4 + 4}}{2} = 1 \pm \sqrt{2}$. Hence the splitting field of f(x) over \mathbb{Q} is, by definition,

$$K = \mathbb{Q}(-2 + \sqrt{3}, -2 - \sqrt{3}, 1 + \sqrt{2}, 1 - \sqrt{2}).$$

We claim that $K=\mathbb{Q}(\sqrt{2},\sqrt{3})$. The inclusion $K\subseteq\mathbb{Q}(\sqrt{2},\sqrt{3})$ is clear since each root of f is contained in $\mathbb{Q}(\sqrt{2},\sqrt{3})$. The other inclusion follows since $\sqrt{2}=\frac{1}{2}(1+\sqrt{2})+\frac{-1}{2}(1-\sqrt{2})$ and $\sqrt{3}=\frac{1}{2}(-2+\sqrt{3})+\frac{-1}{2}(-2-\sqrt{3})$ are both in K. So $\mathbb{Q}(\sqrt{2},\sqrt{3})\subseteq K$.

V. (15) Show that if $F \subseteq E \subseteq K$ are field extensions and [E:F], [K:E] are both finite, then [K:F] = [K:E][E:F].

Solution: Say $\{u_1, \ldots, u_m\}$ is a basis for E over F and $\{v_1, \ldots, v_n\}$ is a basis for K over F. Then each element a in K can be written as

$$a = c_1 v_1 + \dots + c_n v_n$$

for some $c_i \in E$. Similarly, we have $c_i = a_{i1}u_1 + \cdots + a_{im}u_m$ were $a_{ij} \in F$. Substituting into the last displayed equation,

$$a = (a_{11}u_1 + \dots + a_{1m}u_m)v_1 + \dots + (a_{n1}u_1 + \dots + a_{nm}u_m)v_n$$
$$= \sum_{i=1}^n \sum_{j=1}^m a_{ij}v_iu_j.$$

This shows that the $m \cdot n$ elements $v_i u_j$ for i = 1, ..., n and j = 1, ..., m span K over F. To show that these form a basis of K over F, we need to show that they are linearly independent. Suppose there are $a_{ij} \in F$ such that

$$0 = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} v_i u_j$$

= $(a_{11}u_1 + \dots + a_{1m}u_m)v_1 + \dots + (a_{n1}u_1 + \dots + a_{nm}u_m)v_n$.

Since the v_i are linearly independent over E, this shows that

$$a_{i1}u_1 + \dots + a_{im}u_m = 0$$

for all i = 1, ..., n. But then, the u_j are linearly independent over F, so all $a_{ij} = 0$. This shows the linear independence so $\{v_j u_i : 1 \le i \le n, 1 \le j \le m\}$ is a basis of K over F and

$$[K : F] = m \cdot n = [E : F][K : E].$$

Extra Credit (10) Let p(x) and q(x) be irreducible polynomials in F[x] such that $\deg p(x)$ and $\deg q(x)$ are relatively prime integers. Show that if u is a root of p(x) in some extension field of F, then q(x) is also irreducible in F(u)[x].

Solution: If u is a root of p(x) in some extension field of F, then by Theorem 10.7, $[F(u):F]=\deg p(x)=m$. Similarly if v is a root of q(x), we have $[F(v):F]=\deg q(x)=n$. Since $m=\deg p(x)$ and $n=\deg q(x)$ are relatively prime, it follows as in Exercise 11 from Section 10.3 of Hungerford that [F(u,v):F]=mn. From the tower $F\subseteq F(u)\subseteq F(u,v)$, we get [F(u,v):F]=mn=[F(u,v):F(u)][F(u):F], so [F(u,v):F(u)]=n. This says that the minimal polynomial of v over F(u) must have degree n, and it must be a divisor of q(x). Since q(x) has degree n itself, that minimal polynomial must be q(x), and hence q(x) is still irreducible in F(u)[x].