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A) The regular n-gon is constructible if and only if the point (cos (2%) ,sin (27“)) is constructible,
which is true in turn if and only if
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for some m,m’ > 0.

Assume that (1) holds. Note that z = isin (27”) is a root of the polynomial equation
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For all n > 2, this polynomial is irreducible in Q (cos (7”)) [z] since it has no real roots but
Q (cos (%)) C R. Hence
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Now Q((,) is a subfield of Q(cos (?”) 7sin (7”)) so [Q(¢n) : Q] is also a power of 2, since that
degree must divide 2™,
Conversely, assume that [Q((,) : Q] = 2¢ for some [ > 0. Note that

(Ca) ™" = cos (%”) —isin (%’r) ,
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is an element of ((,). It follows that | (cos (2£)) : Q] divides 2¢, hence is also a power of 2.
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Hence cos (2”) is constructible. Hence the poi (cos (%) sin (2”)), and the regular n-gon are
constructible.
B) The roots of z" — 1 =0 in C are 1,(,,(2,...,¢? 1. Hence Q(¢n) = Q(1,¢n,C2,...,¢7 1) is the

splitting field of z" — 1 € Q[z]. By Theorem 10.15 in Hungerford, Q(¢,) is a normal extension of Q.
It is also a separable extension of Q, since Q has characteristic zero (Theorem 10.17). It is finite
dimensional since [Q((,) : Q] < n. Therefore, Q(¢,) is a Galois extension of Q by definition.



C) By the observations in part (B), we know that the roots of 2 —1 = 0 in C are the numbers
¢k for k with 0 < k < n. Since Q((,) is a Galois extension of Q, it follows by the Fundamental
Theorem of Galois Theory (Theorem 11.11) that

[Q(¢n) : Q] = [GalgQ(¢n )

However, by Theorem 11.3, given k with 0 < k < n, there exists o € GalgQ(¢,) with o((,) = ¢F if
and only if ¢ and (¥ have the same minimal polynomial, and then by Theorem 11.4 there is exactly
one element of the Galois group for each such k. By the equation

" 1= H¢d($)
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we see that o € GalgpQ({,) can only map (, to other roots of the nth cyclotomic polynomial ¢, (z),
since the roots of the other factors are all dth roots of unity for d < n. If ¢ = ged(k,n) > 1, then
(¢F)e =1, so ¢F is not a primitive nth root of unity. Hence the roots of ¢, (z) are precisely the ¢*
where ged(n, k) = 1, which implies what we wanted to show.

D) We will show the contrapositive: If £ > 1 is not a power of 2, then 2 4 1 is not prime. If an
integer £ > 1 is not a power of 2, then it must be divisible by some odd prime p > 3. Say k = pq
where ¢ is some other integer. But then we have, by the factorization of a sum of like odd powers:

P9 41 = (29 +17 = (27 + 1)((29)P L — (2972 ... =204 1),

(Since p is odd, the last term in the second factor here is always +1.) Since p is odd and > 3,
29 +1 < 2P7 4 1. Hence 2P? 4+ 1 cannot be a prime because it is divisible by 29 + 1.

E) By the given formula for the Euler ¢-function, if n = 2¢pt - - - py", where p; are odd primes, the
degree [Q(¢,,) : Q], which equals the number of integers k with 1 < m < n that satisfy ged(k,n) =1
by part (C), is given by the equation:

[Qn) = @ =21 (py — 1) -+ - p% (g, — 1). (2)

If the regular n-gon is constructible then [Q((,) : Q] = 2™ for some m > 0. However (2) gives
a factorization of [Q(¢,) : Q] and from this and the Unique Factorization Theorem in Z we see
that all e; = 1 (or else p; divides the degree [Q(¢,) : Q]) and each p; — 1 must be a power of 2, so
p; = 22" 41 by part (D). This says that n must be a power of 2 times a product of distinct primes
of the form 22" + 1.

Conversely, if n is a power of 2 times a product of distinct odd primes of the form 22" + 1, then
(2) shows that [Q(¢,) : Q] equals a power of 2 since all the factors on the right hand side of (2)
are powers of 2 (note that our assumptions ensure e; = 1 for all 7). Therefore the regular n-gon is
constructible by part (A).



