Mathematics 351 — Abstract Algebra 1
Solutions for Final Examination
December 12, 2007

1. Terminology

A)

II.

(5) What does it mean to say that R is a ring with identity?

Solution: R is a ring with identity if there is a multiplicative identity 1 € R — an element 1
such that a-1 =a=1-a for all a € R.

(5) What does it mean to say that a € F' is a root of f(z) € F[z]?

Solution: The element a € F is a root of f(z) € Fz] if f(a) = Op.

(5) What does it mean to say that f(z) € F[z] is irreducible?

Solution: The polynomial f(z) is irreducible in F'[z] if in every factorization f(z) = g(z)h(z)
in F[z], one of g(z), h(x) is a unit in F[z] (a nonzero constant), and the other is an associate
of f(x).

(5) What does it mean to say that a subset I of a ring R is an ideal in R?

Solution: A nonempty subset I of a ring R is an ideal if it is a subring of R which has the
property that a-7,7-a € I whenever a € I and r € R (I “absorbs all products with elements
of I).

(5) What does it mean to say that a permutation o € S,, is even?

Solution: The permutation o is even if it is the product of an even number of transpositions
(or equivalently if the determinant of the associated permutation matrix is +1.)

(15) State and prove the Eisenstein Irreducibility Criterion in Q[z].

Solution: The statement is: Let f(z) = a,z™ + - - + a1z + a¢ be a nonconstant polynomial
in Z[z]. Assume there is some prime p € Z such that p J an, plan_1,--.,p|ag, but p* J ap.
Then f(z) is irreducible in Q[z].



e Proof: Arguing by contradiction, suppose f(z) = g(x)h(z) where g(z) and h(z) both have

III.

positive degree. By Theorem 4.22, we can assume that g(z), h(z) € Z[z] as well so write:

fl) = apz" 4+ ---+a1x+ag
(bpzF + -+ bz + bo) (coz® + -+ - 4 c12 4 ¢o)

for some k,£ > 1. By hypothesis plag so p|(byco). However p? } ag, so by renaming the
polynomials g(z), h(z) if necessary we may assume p|by but p [co. Now look at the coefficient
of z: a1 = byey + bicg. We know pla; and plbg, so p|(bicg) as well. Since p ) ¢p, this implies
that p|b; as well. We continue in the same way to show that p|bg,b1,...,bg. (Note that the
process we started here will continue until the coefficient ay = bocg + bicp_1 + - - - + brco since
k < n.) But now notice that p|b, implies p|(bxcy), so plan. This is a contradiction to the
hypothesis that p does not divide the leading coefficient of f(z), a,. Hence f(z) must be
irreducible in Q[z].

(10) Use the Eisenstein criterion to show that there are irreducible polynomials of every degree
> 1 in Q[z].

Solution: We just need to “cook up” polynomials of each degree satisfying the hypotheses
in the Eisenstein Criterion. One such way, using the prime p = 2: For all degrees n > 1, take

flz) =2z"+2.

These are all irreducible since all the conditions for Eisenstein are met.

(10) Show that a € F' is a root of f(z) € F[z] if and only if (z — a)|f(z) in F[z].

Solution: If (z — a)|f(z), then f(z) = q(z)(z — a) for some ¢(z) € F|z]. Hence f(a) =
g(a)(a — a) = 0. This shows a is a root of f(x). Conversely, assume that x = a is a root of
f(x) and use the division algorithm to divide z —a into f(z) and write f(z) = g(z)(z —a)+7.
Since deg(z —a) =1, r € F is a constant. However, if a is a root of f(z), then 0 = f(a) =
g(a)(a —a) +r=0+r. Hence r =0, so £ — a divides f(z).

(10) Express f(z) = z* — 16 as a product of irreducible polynomials in Q[z], in R[z], and
finally in Clz].
Solution:

o In Qz]: z* —16 = (22 — 4)(z2 + 4) = (z — 2)(z + 2)(z? + 4).
e In Rz]: z* — 16 = (22 — 4)(z%2 + 4) = (z — 2)(z + 2)(2? + 4) (same)
e In Clz]: z* — 16 = (z — 2)(z + 2)(z — 24)(z + 21).



We know that 22 + 4 is irreducible over Q[z] and R[z] since that polynomial has degree 2 but
has no roots in Q or R.

(5) In what sense are your factorizations from part B unique?

Solution: They are unique in the sense that any other irreducible factorization would consist
of the same number of factors and each polynomial would be a nonzero constant times one of
the polynomials in the given factorization. (The factors would match up after rearrangement,
and up to multiplication by units.)

IV. Let p(z) = 22 + = + 1 € Zy[z].

A)

(15) Determine the addition and multiplication tables for the quotient ring R = Zso[z]/(p(z)).

Solution: The addition table is (writing, for instance, 1 for the coset 1 + (p(z))):

+ ‘ 0 1 T z+1
0 0 1 T z+1
1 1 0 z+1 T
T T z+1 0 1
z+1 z+1 T 1 0
The multiplication table is

- o 1 z x4l

0 0 0 0 0

1 0 1 T z+1

x 0 T z+1 1
z+1 0 z+1 1 T

(5) Is R a field? Why or why not?

Solution: The answer is yes. This can be seen directly by examining the multiplication
table. Note that every nonzero element has a multiplicative inverse. It also follows from the
result of Theorem 5.10 since the polynomial p(z) = 22 + x + 1 is irreducible in Zy[xz].

(5) Show that = + 1 € Zs[z]/(p(x)) is a root of the polynomial y? + y + 1 € Zsly].

Solution: We compute directly with the addition and multiplication tables: If y = z + 1,
then y? =z, s0y?> +y+1=z+ (z+1)+1 = 0 since the coefficient arithmetic is done in Z.



A) (10) State the First Isomorphism Theorem for rings.

Solution: The First Isomorphism Theorem states that if ¢ : R — S is a ring homomorphism,
then im(¢p) is isomorphic to R/ ker(y) as a ring.

B) (10) Let ¢ be the mapping

p:Zz] — Zs
f(x) —  f(0) mod 3.

(That is, ¢ takes each polynomial f(z) = anz™ + --- + a1z + ap to the class of ap mod 3).
Show that ¢ is a ring homomorphism and show that its kernel is the ideal (z,3) C Z[z].

Solution: ¢ is a ring homomorphism since

o(f(z) +g(z)) = [f(0)+g(0)](class in Z3)
= [f(0)] + [g(0)],
and
o(f(z)-g(z)) = [f(0)-g(0)]
= [f(0)] + [g(0)] mod 3.

The kernel of ¢ is the set of all f(z) such that ¢(f(z)) = 0 in Z3. Any polynomial in (z, 3)
is contained in the kernel since if f(z) = zg(x) + 3h(z) for some g(z), h(x), then [f(0)] =
[0-¢(0) + 3h(0)] = [3R(0)] = [0]. Conversely, if [f(0)] = 0, then f(z) € Z[z] is a polynomial
whose constant term is a multiple of 3. This means that we can write f(z) = zg(z) + 3h(x)
for polynomials g(z), h(x). For instance, if f(z) = apz™+---+a1x+ag, then [f(0)] = [ag] =0
so ag = 3m for some m € Z. Hence f(z) = z(apz™ t +---+a1) + 3m € (z,3).

C) (5) Is the ideal (z,3) in Z[z] maximal? Why or why not?
Solution: The answer is yes. The homomorphism from part B is onto. Hence
L3 ~ Zz]/ ker(p) = Z[x]/(x,3).
Since 3 is a prime number Zjs is a field, hence (z,3) is maximal.
VI. Let R be a ring with identity.
A) (7.5) Show that the set of units in R is a group under the multiplication operation from R.
Solution: We let U be the set of units in R, that is

U={reR:rs=1=sr for some s € R}.
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We must show that the gorup axioms hold in U. First U is closed under products since
(rs) ' =sr L eUifr € Uands € U. Associativity of multiplication follows from the
ring axioms. U has an identity element since the ring multiplicative identity 1 serves that
purpose. Finally, every element of U has a multiplicative inverse by definition. Hence U is a
group under multiplication.

B) (10) Determine the multiplication table for the group of units in the ring Zg x Z4 = {(r,s) :
r € Zg and s € Z4} (componentwise sum and product).

Solution: The units in Zg are {1,3,5,7} and the units in Z4 are {1,3}. In order for (a,b) €
7.8 X Z4 to be a unit, there must be some (¢, d) such that (a, b)(c,d) = (ac,bd) = (1,1). Hence
a and b must both be units themselves in their respective rings. The operation table is

: (1L,1) (3,1) (5,1) (1,1) (1,3) (3,3) (5,3) (7,3)
1,1 | @) 6,1 6,1) (7,1) (1,3) (3,3) (5,3) (7,3)
3,1) | (3,1) (1,1) (r,1) (5,1) (3,3) (1,3) (7,3) (5,3)
(5,1) | (51) (7,1) (L,1) (3,1) (53) (7,3) (1,3) (3,3)
(7,1) | (7,1) (5,1) (3,1) (1,1) (7,3) (53) (3,3) (2,3)
(1,3) | (1,3) (3,3) (5,3) (7,3) (1,1) (3,1) (5,1) (7,1)
(3,3) | 3,3) (1,3) (7,3) (53) 1) (L) (7,1) (5,1)
(5,3) | (5,3) (7,3) (1,3) (3,3) (51) (7,1) (1,1) (3,1)
(7,3) | (1,3) (5,3) 3,3 (1,3) (1) (1) (31 (1,1)

C) (7.5) Is your group from part B cyclic? Why or why not?

Solution: By inspection, we see that every element of this group has order 2. Hence it
cannot be cyclic(!)

VII. Note: This problem had a small but unfortunate error in its statement. It should have said:
Let G be a group, and let H be a subgroup of G. Define

Ng ={z € G:zHz ' = H},
called the normalizer of H in G.

The condition zHz~! C H is enough to imply xHz~' = H when H is a finite group and in
some other cases, but not in complete generality. The condition zHz ! = H is needed for one part
below.

A) (10) Let G = GL(2,R) be the group of 2 x 2 invertible matrices under matrix multiplication

and let
1 r
n={( 7)eres),



Show that H is a subgroup of G and determine Ny in this case.

Solution: First we show H is a subgroup. H is clearly nonempty since H contains one
matrix for each real r. H is closed under matrix products since

G D6 r1)en

Also, H is closed under inverses since

-1
1 r 1 —r
(0 1) _(0 1>EH'
This shows that H is a subgroup of GL(2, R).

Next, we show that Ny is the set of upper-triangular invertible matrices,

a b
B—{(O d).a,b,dER,ad;zéO}.
a b\ _ i
0 d 0 )
a b\ (1 r % g—fi’ _ 1 %
0 d/\0 1)\0 1 0 1
which is in H. Moreover every matrix in H can be obtained. Hence B C Ny. Conversely, if

a b\ . .
(c d) is in Ng, then

o B\(1 r\ 1 (d —b\_[ * =
c dJ\0 1) ad—bc\—c a ) ajicfbrc*

is in H for all r. Looking at the lower left entry, we see that ¢ must be 0. Hence the matrix

(“ b) is in B, so Ny C B.
c d

First, we see that

| |
@.I»—‘&J@

(10) Show that for any subgroup of a general group, H C G, Ny is a subgroup of G containing
H, and that H is a normal subgroup of Ny.

Solution: First, Ny contains H (and hence is nonempty). Indeed, if y € H, since H is a
subgroup (closed under products and inverses), yzy~' € H for all z € H. Hence H C Npy.
Next, suppose that y,y’ are both in Ny. Then H = yHy ! = H,so H = (yHy Y)(y') ! =
(v'y)H(y'y) '. Hence y'y € Ng. Finally, if y € Ng, then yHy ' = H. Tt follows that
y~'Hy = H as well. This shows that y~! € Ny, so Ny is subgroup of G.



VIIIL

H is a normal subgroup of Ny since for ally € Ny, yHy ™!

conditions of Theorem 7.34 holds.

= H. Hence one of the equivalent

(5) Show that the quotient group Ng/H for G, H as in part A is isomorphic to the group
R* x R*, where R* denotes the multiplicative group of nonzero real numbers.

Solution: Define
p:Ng — R' xR
a b
(0 d) —  (a,d).

The mapping ¢ is clearly onto. It is also a group homomorphism since

a b\ (d b aa’ ab' + bd
(6 )G o) - (T ")
= (ad',dd)
= (a,d)(d,d")

= o((60)e((6 2)

The kernel of ¢ is the subset of Ny consisting of matrices with a = d = 1, which is just H.
Then the statement we want follows from the First Isomorphism Theorem for groups.

(5) By Lagrange’s theorem, what are the possible orders of subgroups of S;?

Solution: These are the divisors of |Sy| = 24:

|H| € {1,2,3,4,6,8,12,24}.

(10) Show that the subset G C Sy defined by
G ={(),(1234), (13)(24), (1432), (24), (1234)(24), (13)(24)(24), (1432)(24)}

is a subgroup of S4. Note that the second four elements are equal to the compositions of the
first four with the two-cycle (24).

Solution: To do this in a reasonable way (i.e. without having to write out the whole
8 x 8 group table which is routine but tedious), note first that the first four elements are
the elements of the cyclic subgroup H = ((1234)) C S4. The second four elements are these
composed with (24). To show that G is closed under products, consider the four cases



e o(7(24)),
(o(24))7, and
o (0(24))(7(24))

for 0,7 € H. In the first case we have an element of H C G since H is closed under
products. In the second case, by associativity, o(7(24)) = (07)(24) and o7 € H so we have
an element of G again. In the third case, note that (0(24))7 = o((24)7(24))(24) since (24)
is an element of order 2 (equals its own inverse). The element (24)7(24) the permutation
obtained by interchanging 2,4 in 7. If 7 = () this changes nothing. If 7 = (1234) then
(24)(1234)(24) = (1423) € H. TIf 7 = (13)(24), then (24)(13)(24)(24) = (13)(24) € H again.
If 7 = (1432), then (24)(1432)(24) = (1234). Hence all these elements give elements of G too
(elements of the form ¢(24) for o € H). Finally in the fourth case, the reasoning used in case
three shows that we obtain an element in H from (24)7(24) so ¢(24)7(24) € H C G. Hence
G is closed under products.

To show that G is closed under inverses, note that H is a subgroup of Sy so the inverse
of each element in H is also in H. The inverse of o(24) is (24)0~! = (24)071(24)(24) =
((24)0~1(24))(24). This equals an element of H times (24) as in cases three and four of the
proof for products.

C) (10) Determine the left and right cosets of G in S4. Is G a normal subgroup of S47 Why
or why not?

Solution: The left cosets are (with elements written as products of disjoint cycles for easy
comparison)

0G=G = {(),(1234),(13)(24), (1432),(24), (12)(34),(13), (14)(23)}
(12)G = {(12),(234),(1324), (143), (124), (34), (132), (1423)}
(149G = {(14),(123),(1342),(243), (142),(1243),(134),(23)}

The right cosets are different

GO =G = {0),(1234), (13)(24), (1432), (24), (12)(34), (13), (14)(23)}
G(12) = {(12),(134), (1423), (243), (142), (34), (123), (1324)}
G(14) = {(14),(234), (1243), (132), (124), (1342), (143), (23)}

This shows G is not a normal subgroup of Sy.

Comment: G is isomorphic to Dy, the symmetries of the square, here!

Have a peaceful and joyous holiday season!



