
Mathematics 243, section 3 – Algebraic Structures
Problem Set 9

due: Friday, November 30

‘A’ Section

1. For each of the following values of n,

• Find all distinct generators of the group (Zn,+),

• Find all subgroups of (Zn,+) and their orders

• Find all elements of (Z×

n , ·) and their orders (for the multiplication operation mod n now)

n = 13, 16, 30

(Use the “big theorem” on cyclic groups for as much of this as possible. It is not necessary
to do a lot of computations in most cases.)

Solution: For n = 13, by the “big theorem” we know that the generators of Z13 are the [a]
such that gcd(a, 13) = 1, which are [1], [2], [3], [4], . . . , [12]. The only subgroups are {[0]} and
Z13 itself.

For the multiplication operation, Z
×

13
= {[1], [2], . . . , [13]}, and now taking powers [2]k we get:

〈[2]〉 = {[1], [2], [4], [8], [3], [6], [12], [11], [9], [5], [10], [7]} = Z
×

13

This shows Z
×

13
is cyclic of order 12 with generator [2]. That says that [1] generates the trivial

subgroup consisting of just the identity. The elements [2]5 = [6], [2]7 = [11], [2]11 are the other
generators of Z

×

13
and have multiplicative order 12. Then [2]2 = [4] and [2]10 = [10] generate

the cyclic subgroup of order 6, so have multiplicative order 6. Also, [2]3 = [8] and [2]9 = [5]
generate the cyclic subgroup of order 4, so have multiplicative order 4, Next, [2]4 = [3] and
[2]8 generate a cyclic subgroup of order 3 and have multiplicative order 3. Finally, [2]6 = [12]
generates a cyclic subgroup of order 2 and has multiplicative order 2.

n = 16: By the “big theorem” we know that the generators of the cyclic group (Z16,+)
are the [a] such that gcd(a, 16) = 1, which are [1], [3], [5], [7], [9], [11], [13], [15]. The additive
subgroups of Z16 are

{[0]} = 〈[0]〉

Z16 = 〈[1]〉 = 〈[3]〉 = · · · = 〈[15]〉

{[0], [2], [4], [6], [8], [10], [12], [14]} = 〈[2]〉 = 〈[6]〉 = 〈[10]〉 = 〈[14]〉

{[0], [4], [8], [12]} = 〈[4]〉 = 〈[12]〉

{[0], [8]} = 〈[8]〉.

The number of generators in each case is given by the Euler function from Problem Set 7:
There are ϕ(o([a])) different generators of the group if the order is o([a]).
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For the multiplication operation, Z
×

16
= {[1], [3], [5], [7], [9], [11], [13], [15]}. We have the fol-

lowing (finding the smallest positive powers giving the multiplicative identity [1]):

o([1]) = 1

o([3]) = 4 since [3]4 = [81] = [1]

o([5]) = 4 since [5]4 = [625] = [1]

o([7]) = 2 since [7]2 = [49] = [1]

o([9]) = 2 since [9]2 = [81] = [1]

o([11]) = 4 since [11]4 = [1]

o([13]) = 4 since [13]4 = [1]

o([15]) = 2 since [15]2 = [1].

(Note that this shows Z
×

16
is not a cyclic group under multiplication.)

n = 30: By the “big theorem” we know that the generators of the cyclic group (Z30,+) are
the [a] such that gcd(a, 30) = 1, which are [1], [7], [11], [13], [17], [19], [23], [29]. The additive
subgroups of Z30 are

{0} = 〈[0]〉

Z30 = 〈[1]〉 = 〈[7]〉 = · · · = 〈[29]〉

{[0], [2], [4], . . . , [28]} = 〈[2]〉 = 〈[4]〉 = 〈[8]〉 = 〈[14]〉 = 〈[16]〉

= 〈[22]〉 = 〈[26]〉 = 〈[28]〉

{[0], [3], [6], . . . , [27]} = 〈[3]〉 = 〈[9]〉 = 〈[21]〉 = 〈[27]〉

{[0], [5], [10], [15], [20], [25]} = 〈[5]〉 = 〈[25]〉

{[0], [6], [12], [18], [24]} = 〈[6]〉 = 〈[12]〉 = 〈[18]〉 = 〈[24]〉

{[0], [10], [20]} = 〈[10]〉 = 〈[20]〉

{[0], [15]} = 〈[15]〉.

Again, number of generators in each case is given by the Euler function from Problem Set 7:
ϕ(o([a])) .

For the multiplication operation, Z
×

30
= {[1], [7], [11], [13], [17], [19], [23], [29]}. We find that
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o([1]) = 1

o([7]) = 4 since [7]4 = [1]

o([11]) = 2 since [11]2 = [1]

o([13]) = 4 since [13]4 = [1]

o([17]) = 4 since [17]4 = [1]

o([19]) = 2 since [19]2 = [1]

o([23]) = 4 since [23]4 = [1]

o([29]) = 2 since [29]2 = [1].

(Note that this shows Z
×

16
is not a cyclic group under multiplication.)

2. Let ϕ : Z18 → Z9 be defined by ϕ([x]) = [3x].

(a) Verify that ϕ is a group homomorphism.

Solution: ϕ is a group homomorphism since for all [x] and [y] in Z18,

ϕ([x] + [y]) = ϕ([x+ y]) = [3(x+ y)] = [3x] + [3y] = ϕ([x]) + ϕ([y]).

(b) Determine the kernel of ϕ.

Solution: The kernel of ϕ is

ϕ−1({[0]}) = {[0], [3], [6], [9], [12], [15]} = 〈[3]〉 ⊂ Z18

(c) Determine the image of ϕ.

Solution: The image of ϕ is

ϕ(Z18) = {[0], [3], [6]} = 〈[3]〉 ⊂ Z9

‘B’ Section

1. Let G be a group and consider the mapping ϕ : G→ G defined by ϕ(x) = x−1. Show that ϕ
is always one-to-one and onto, but that ϕ is an isomorphism of groups if and only if G is an
abelian group.

Solution: The map ϕ is one-to-one since ϕ(x) = ϕ(y) implies x−1 = y−1, and taking inverses of
both sides we get x = y. The map ϕ is onto because given any x ∈ G, x = (x−1)−1 = ϕ(x−1).
This is a group isomorphism if and only if

(x ∗ y)−1 = ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y) = x−1 ∗ y−1 = (y ∗ x)−1.

where the last equality follows from the reverse order law. Since ϕ is one-to-one, this is
equivalent to saying that x ∗ y = y ∗ x for all x, y ∈ G and hence G is abelian. Hence ϕ is an
isomorphism of groups if and only if G is an abelian group.
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2. An automorphism of a group G is an isomorphism of groups ϕ : G→ G (that is, the domain
and the range are both the same group G).

(a) Let A = {a, b, c} andG = S(A) be the group of permutations of A. Show that ϕ : G→ G

defined by ϕ(f) = Ra ◦ f ◦Ra is an automorphism of G.

Solution: ϕ is a one-to-one mapping from G to itself since if ϕ(f) = ϕ(g), then Ra ◦ f ◦
Ra = Ra ◦ g ◦ Ra. Composing with Ra again on the left and right on both sides, since
Ra ◦ Ra = IA, we get f = g. Since S(A) is a finite set and ϕ is one-to-one, it is also
onto. Finally, ϕ is an isomorphism of groups since

ϕ(f ◦ g) = Ra ◦ f ◦ g ◦Ra

= Ra ◦ f ◦Ra ◦Ra ◦ g ◦Ra since Ra ◦Ra = IA

= (Ra ◦ f ◦Ra) ◦ (Ra ◦ g ◦Ra) (associativity of composition)

= ϕ(f) ◦ ϕ(g).

(b) Show that the collection of all automorphisms of a general group G is itself a group
under the operation of function composition.

Solution: We must show that the four axioms (properties) in the definition of a group
are satisfied.

• First, if ϕ,ψ are automorphisms of G, then ϕ◦ψ is one-to-one and onto by theorems
from Chapter 1. The composition is also an isomorphism of groups since

(ϕ ◦ ψ)(x ∗ y) = ϕ(ψ(x ∗ y))

= ϕ(ψ(x) ∗ ψ(y)) since ψ is a homomorphism

= ϕ(ψ(x)) ∗ ϕ(ψ(y)) since ϕ is a homomorphism

= (ϕ ◦ ψ)(x) ∗ (ϕ ◦ ψ)(y).

Thus the set of automorphisms is closed under composition.

• Function composition is always associative, so there is nothing more to prove for
that property in the definition of a group.

• The identity map IG, defined by IG(x) = x for all x ∈ G, is one-to-one and onto
and satisfies

IG(x ∗ y) = x ∗ y = IG(x) ∗ IG(y).

Hence it is an isomorphism from G to itself, and it is the identity under composition,
since ϕ ◦ IG = ϕ = IG ◦ ϕ for any automorphism ϕ of G.

• Finally, if ϕ is an isomorphism, then the inverse mapping ϕ−1 exists as a mapping
from G to itself and is also one-to-one and onto. We want to show that ϕ−1 also has
the homomorphism property. So let x, y ∈ G. Since ϕ is onto, we know x = ϕ(a)
and y = ϕ(b) for some unique a, b ∈ G. Therefore since ϕ is a homomorphism, we
have ϕ(a ∗ b) = x ∗ y. But this also says ϕ−1(x) ∗ϕ−1(y) = a ∗ b = ϕ−1(x ∗ y). Hence
ϕ−1 is also a group homomorphism.
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(c) Show if G is a general group and g ∈ G, then the conjugation mapping defined by
ϕg(x) = gxg−1 is an automorphism of G. (Note that the example in part (a) has this
form.)

Solution: ϕg is one-to-one since if ϕg(x) = ϕg(y), then gxg−1 = gyg−1. But that implies
g−1gxg−1g = g−1gyg−1g, so x = y. Next, ϕg is onto since given y ∈ G, y = ϕg(g

−1yg) =
gg−1ygg−1. Finally, ϕg is a group homomorphism since for all x, y ∈ G, as in part (a)
above

ϕg(xy) = gxyg−1

= gx(g−1g)yg−1, since g−1g = e

= (gxg−1)(gyg−1) by associativity

= ϕg(x)ϕg(y).

(d) Show that the collection of ϕg for all g ∈ G (as in part (c)) is a subgroup of the group of
automorphisms of G.

Solution: We will use the “shortcut method” from Theorem 3.10. First, this collection of
automorphisms is certainly nonempty since we have one of them for each g ∈ G. (They
might not be distinct, of course.) Let ϕg and ϕh be any two such automorphisms. Note
that ϕ−1

h is the mapping ϕh−1 since

y = ϕh(x) = hxh−1 ⇔ x = h−1yh = ϕh−1(y).

Then ϕg ◦ ϕ
−1

h is the mapping defined by

(ϕg ◦ ϕ
−1

h )(x) = gh−1xhg−1 = (gh−1)x(gh−1)−1 = ϕgh−1(x).

This is the automorphism ϕk for k = gh−1 ∈ G. Hence this collection of automorphisms
is a subgroup of the group of all automorphisms.

3. We can consider isomorphism of groups as a relation on the collection of all groups: GRH ⇔
there exists an isomorphism ϕ : G → H. Show that isomorphism of groups is an equivalence

relation on the collection of all groups.

Solution: Every group is isomorphic to itself via the identity mapping IG : G → G with
IG(g) = g for all g ∈ G. This is clearly one-to-one, onto, and a group homomorphism. Thus
the isomorphism relation is reflexive. Next, if G is isomorphic to H via ϕ : G → H, then
since ϕ is one-to-one and onto, we have the inverse mapping ϕ−1 : H → G. We want to show
that ϕ−1 also has the homomorphism property. So let x, y ∈ H, Since ϕ is onto, we know
x = ϕ(a) and y = ϕ(b) for some a, b ∈ G. Therefore since ϕ is a homomorphism, we have
ϕ(a ∗ b) = x ∗ y. But this also says ϕ−1(x) ∗ ϕ−1(y) = a ∗ b = ϕ−1(x ∗ y). Hence ϕ−1 is also
a group homomorphism from H to G. Thus ϕ−1 is also an isomorphism of groups. Hence H
is isomorphic to G and the isomorphism relation is symmetric. Finally, say G is isomorphic
to H via ϕ : G → H and H is isomorphic to K via ψ : H → K. Consider ψ ◦ ϕ : G → K.
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We know from general results from Chapter 1 that ψ ◦ ϕ is one-to-one and onto. Moreover,
for all x, y ∈ G,

(ϕ ◦ ψ)(x ∗G y) = ϕ(ψ(x ∗G y))

= ϕ(ψ(x) ∗H ψ(y)) since ψ is a homomorphism

= ϕ(ψ(x)) ∗K ϕ(ψ(y)) since ϕ is a homomorphism

= (ϕ ◦ ψ)(x) ∗K (ϕ ◦ ψ)(y).

Thus ϕ ◦ ψ is also an isomorphism from G to K. This shows the isomorphism relation is
transitive.

Comment: You should note that the ideas here are the same as those in the proof of part (b)
of question 2 above(!)

4. Let G = 〈a〉 be a cyclic group and let ϕ : G → H be a group homomorphism. Show that if
we know the one element ϕ(a), then we know where ϕ maps every element of G.

Solution: If G = 〈a〉 is a cyclic group, then every element of the group G is an for n ∈ Z.
If n = 0, then a0 = eG and ϕ(eG) = eH . If n > 0, then we argue by induction that
ϕ(an) = (ϕ(a))n (so knowing ϕ(a) determines all of those elements too). The base case for
the induction is n = 1, and there is nothing to prove there. Assume we know ϕ(ak) = (ϕ(a))k .
Then

ϕ(ak+1) = ϕ(ak ∗ a) by definition of the power

= ϕ(ak) ∗ ϕ(a) by the homomorphism property

= (ϕ(a))k ∗ ϕ(a) by the induction hypothesis

= (ϕ(a))k+1 by the definition of the power.

This shows ϕ(an) = (ϕ(a))n for all n ≥ 1. A similar induction also shows ϕ(an) = (ϕ(a))n for
all n ≤ −1. The base case there is the fact we proved in general before: ϕ(a−1) = (ϕ(a))−1.
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