Mathematics 243, section 3 — Algebraic Structures
Problem Set 9
due: Friday, November 30

‘A’ Section

1. For each of the following values of n,

e Find all distinct generators of the group (Z,, +),
e Find all subgroups of (Z,,+) and their orders

e Find all elements of (Z), ) and their orders (for the multiplication operation mod n now)
n = 13,16, 30

(Use the “big theorem” on cyclic groups for as much of this as possible. It is not necessary
to do a lot of computations in most cases.)

Solution: For n = 13, by the “big theorem” we know that the generators of Z;3 are the [a]
such that ged(a, 13) = 1, which are [1],[2],[3],[4],.-..,[12]. The only subgroups are {[0]} and
Zlg itself.

For the multiplication operation, Z75 = {[1],[2],...,[13]}, and now taking powers [2]

([21) = {11, [2], 141, [8], [3], (6], [12], [11], [9], [5], [10], [7]} = Z{;

This shows Z15 is cyclic of order 12 with generator [2]. That says that [1] generates the trivial
subgroup consisting of just the identity. The elements [2]® = [6], [2]” = [11], [2]!! are the other
generators of Z;5 and have multiplicative order 12. Then [2]? = [4] and [2]!° = [10] generate
the cyclic subgroup of order 6, so have multiplicative order 6. Also, [2]> = [8] and [2]° = [5]
generate the cyclic subgroup of order 4, so have multiplicative order 4, Next, [2]* = [3] and
[2]® generate a cyclic subgroup of order 3 and have multiplicative order 3. Finally, [2]¢ = [12]
generates a cyclic subgroup of order 2 and has multiplicative order 2.

k we get:

n = 16: By the “big theorem” we know that the generators of the cyclic group (Zig,+)
are the [a] such that ged(a,16) = 1, which are [1],[3], [5],[7], [9], [11], [13], [15]. The additive
subgroups of Zig are

{[0]} = ([o])
Zng = ([1]) = (B]) = --- = ([15])
{[0], 2], [4], [6], [8] [10], [12], [14]} = {[2]) = ([6]) = ([10]) = {[14])
{[0], (4], [8], [12]} = ([4]) = ([12])
{[0], [8]} = ([8])-

The number of generators in each case is given by the Euler function from Problem Set 7:
There are p(o(]a])) different generators of the group if the order is o([a]).



For the multiplication operation, Zjy = {[1], [3], [5],[7],[9], [11], [13], [15]}. We have the fol-
lowing (finding the smallest positive powers giving the multiplicative identity [1]):

o([1]) =1

o([3]) = 4 since [3]* = [81] = [1]
o([5]) = 4 since [5]* = [625] = [1]
o([7]) = 2 since [7]2 = [49] = [1]
o([9]) = 2 since [9]2 = [81] = [1]
o([11]) = 4 since [11]* = [1]
0([13]) = 4 since [13]* = [1]
o([15]) = 2 since [15]2 = [1].

(Note that this shows Zjy is not a cyclic group under multiplication.)

n = 30: By the “big theorem” we know that the generators of the cyclic group (Zsp,+) are
the [a] such that ged(a,30) = 1, which are [1],[7], [11], [13],[17], [19], [23], [29]. The additive

subgroups of Zszy are

{0} = (0D
Zzo = ([1]) = ([7]) = --- = ([29])
{[0], [2], [4]; .., [28]} = ([2]) = ([4]) = ([8]) = ([14]) = {[16])

{[0], [3], } 1) =([9]) = {[21]) = ([27])
{[0], [5], [10], [15], [20], [25]} = ([5]) = ([25))
{[0], [6], [12], [18], [24]} = ([6]) = ([12]) = ([18]) = ([24])
{[0], [10], [20]} = ([10]) = ([20])
{[0], [15]} = {[15]).
Again, number of generators in each case is given by the Euler function from Problem Set 7:

p(o([a])) -
For the multiplication operation, Z3, = {[1], [7], [11], [13], [17], [19], 23], [29]}. We find that



o([1]) =1

o([7]) = 4 since [7]* = [1]
o([11]) = 2 since [11]* = [1]
o([13]) = 4 since [13]* = [1]
o([17]) = 4 since [17]* = [1]
o([19]) = 2 since [19]* = [1]
o([23]) = 4 since [23]* = [1]
0([29]) = 2 since [29]% = [1].

(Note that this shows Zjj is not a cyclic group under multiplication.)
2. Let ¢ : Z1g — Zg be defined by ¢([x]) = [3z].

(a) Verify that ¢ is a group homomorphism.

Solution: ¢ is a group homomorphism since for all [z] and [y] in Zis,
(2] + ) = e(lz +yl) = Bl +y)] = B2] + Byl = ¢ ([z]) + @([y))-

(b) Determine the kernel of .
Solution: The kernel of ¢ is

e~ ({[0]}) = {[0], [3], [6], [9, [12], [15]} = ([3]) C Z1s

(¢) Determine the image of .

Solution: The image of ¢ is
p(Z1g) = {[0], [3], [6]} = ([3]) € Zg

‘B’ Section

1. Let G be a group and consider the mapping ¢ : G — G defined by ¢(z) = x~. Show that ¢
is always one-to-one and onto, but that ¢ is an isomorphism of groups if and only if G is an
abelian group.

Solution: The map ¢ is one-to-one since p(x) = ¢(y) implies =1 = y~!, and taking inverses of

both sides we get = y. The map ¢ is onto because given any z € G, z = (z7!)~! = p(z™1).
This is a group isomorphism if and only if

(@xy) P =plexy) =p@) xply) =2 vy~ = (yxa)h
where the last equality follows from the reverse order law. Since ¢ is one-to-one, this is
equivalent to saying that x *y = y x x for all x,y € G and hence G is abelian. Hence ¢ is an
isomorphism of groups if and only if G is an abelian group.



2. An automorphism of a group G is an isomorphism of groups ¢ : G — G (that is, the domain
and the range are both the same group G).

(a)

Let A = {a,b,c} and G = S(A) be the group of permutations of A. Show that ¢ : G — G
defined by ¢(f) = Rq o f o R, is an automorphism of G.

Solution: ¢ is a one-to-one mapping from G to itself since if o(f) = ¢(g), then R, o f o
R, = R, 090 R,. Composing with R, again on the left and right on both sides, since
Ryo Ry = I, we get f = g. Since S(A) is a finite set and ¢ is one-to-one, it is also
onto. Finally, ¢ is an isomorphism of groups since

gp(fog):RaofogoRa
=RyofoR,0R,0g0R, since RooR, =14
= (Ryso foR,)o(Ryogo0R,) (associativity of composition)
= @(f) o v(g)-

Show that the collection of all automorphisms of a general group G is itself a group
under the operation of function composition.

Solution: We must show that the four axioms (properties) in the definition of a group
are satisfied.

e First, if ¢, 1 are automorphisms of GG, then po1) is one-to-one and onto by theorems
from Chapter 1. The composition is also an isomorphism of groups since

(pod)(zxy) = p((z *y))
= p(¢(x) *1(y)) since ¢ is a homomorphism

= p(¢(x)) * p(1(y)) since ¢ is a homomorphism
= (pov)(@) * (p oY) (y).

Thus the set of automorphisms is closed under composition.

e Function composition is always associative, so there is nothing more to prove for
that property in the definition of a group.

e The identity map Ig, defined by Ig(z) = z for all € G, is one-to-one and onto
and satisfies

Ig(z*xy) =xzxy=Ig(x)* Ia(y).

Hence it is an isomorphism from G to itself, and it is the identity under composition,
since p o I = ¢ = Ig o ¢ for any automorphism ¢ of G.
e Finally, if ¢ is an isomorphism, then the inverse mapping ¢! exists as a mapping
from G to itself and is also one-to-one and onto. We want to show that ¢! also has
the homomorphism property. So let z,y € G. Since ¢ is onto, we know = = ¢(a)
and y = ¢(b) for some unique a,b € G. Therefore since ¢ is a homomorphism, we
have p(a*b) = x*y. But this also says o~} (z) x o~ (y) = a*b = o ' (z*y). Hence

¢~ ! is also a group homomorphism.



(c) Show if G is a general group and g € G, then the conjugation mapping defined by
¢g(z) = grg~! is an automorphism of G. (Note that the example in part (a) has this
form.)

Solution: ¢, is one-to-one since if ¢4(z) = p4(y), then grg~! = gyg~!. But that implies

g rgxg g =g 'gyg'g, so x = y. Next, (g is onto since given y € G, y = cpg(g_lyg) =
g9 'ygg™'. Finally, g is a group homomorphism since for all z,y € G, as in part (a)
above

py(ry) = gryg ™

=gz(g ' g)yg~", since g7'g=e
= (gxg_l)(gyg_l) by associativity
= ‘:Dg(x)‘;pg(y)-

(d) Show that the collection of ¢, for all g € G (as in part (c)) is a subgroup of the group of
automorphisms of G.

Solution: We will use the “shortcut method” from Theorem 3.10. First, this collection of
automorphisms is certainly nonempty since we have one of them for each g € G. (They
might not be distinct, of course.) Let ¢4 and ¢, be any two such automorphisms. Note
that cpgl is the mapping ¢, -1 since

y=on(x) =haeh™ &z =h"tyh = ¢,-1(y).
Then ¢4 0 cpgl is the mapping defined by

(pg 0@y ) (@) = gh™ ahg™ = (gh™a(gh™") ™! = -1 ().

This is the automorphism ¢y, for k = gh™ € G. Hence this collection of automorphisms
is a subgroup of the group of all automorphisms.

3. We can consider isomorphism of groups as a relation on the collection of all groups: GRH <
there exists an isomorphism ¢ : G — H. Show that isomorphism of groups is an equivalence
relation on the collection of all groups.

Solution: FEvery group is isomorphic to itself via the identity mapping Ig : G — G with
Ig(g) = g for all g € G. This is clearly one-to-one, onto, and a group homomorphism. Thus
the isomorphism relation is reflexive. Next, if GG is isomorphic to H via ¢ : G — H, then
since ¢ is one-to-one and onto, we have the inverse mapping ¢~ : H — G. We want to show
that ¢! also has the homomorphism property. So let z,y € H, Since ¢ is onto, we know
x = ¢(a) and y = ¢(b) for some a,b € G. Therefore since ¢ is a homomorphism, we have
¢(a*b) = x *y. But this also says o~ 1(z) x o~ (y) = a*b = o '(z*y). Hence p~! is also
a group homomorphism from H to G. Thus ¢! is also an isomorphism of groups. Hence H
is isomorphic to G and the isomorphism relation is symmetric. Finally, say G is isomorphic
to H via ¢ : G — H and H is isomorphic to K via ¢ : H — K. Consider 9o ¢ : G — K.



We know from general results from Chapter 1 that v o ¢ is one-to-one and onto. Moreover,
for all x,y € G,

(po)(z*ay) = p((z *q y))

o((x) *xg ¥ (y)) since ¥ is a homomorphism
e((x)) xx p((y)) since ¢ is a homomorphism
= (po)(2) *K (P o P)(y).

Thus ¢ o ¢ is also an isomorphism from G to K. This shows the isomorphism relation is
transitive.

Comment: You should note that the ideas here are the same as those in the proof of part (b)
of question 2 above(!)

. Let G = (a) be a cyclic group and let ¢ : G — H be a group homomorphism. Show that if
we know the one element ¢(a), then we know where ¢ maps every element of G.

Solution: If G = (a) is a cyclic group, then every element of the group G is a™ for n € Z.
If n = 0, then a° = eg and ¢(eg) = ey. If n > 0, then we argue by induction that
e(a™) = (¢(a))™ (so knowing p(a) determines all of those elements too). The base case for
the induction is n = 1, and there is nothing to prove there. Assume we know p(a”*) = ((a))*.
Then

k

a**1y = p(a* % a) by definition of the power
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ak) * p(a) by the homomorphism property
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a))¥ % ¢(a) by the induction hypothesis
a))*! by the definition of the power.
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This shows p(a") = (¢(a))™ for all n > 1. A similar induction also shows ¢(a™) = (¢(a))" for
all n < —1. The base case there is the fact we proved in general before: p(a=!) = (¢(a))™ .



