
Mathematics 243, section 3 – Algebraic Structures
Solutions for Problem Set 8

November 16, 2012

‘A’ Section

1. Consider the 2 × 2 matrices I2, S,X, Y,D, T defined by

I2 =

(

1 0
0 1

)

, S =

(

0 −1
1 0

)

X =

(

1 0
0 −1

)

, Y =

(

−1 0
0 1

)

D =

(

0 1
1 0

)

, T =

(

0 −1
−1 0

)

Let G = {I2, S, S2, S3,X, Y,D, T}. Construct the operation table for matrix multiplication
on this set and verify that G is a group under this operation.

Solution: The table looks like this (taking the products in order row × column in all cases):

· I2 S S2 S3 X Y D T

I2 I2 S S2 S3 X Y D T
S S S2 S3 I2 D T Y X
S2 S2 S3 I2 S Y X T D
S3 S3 I2 S S2 T D X Y
X X T Y D I2 S2 S3 S
Y Y D X T S2 I2 S S3

D D X T Y S S3 I2 S2

T T Y D X S3 S S2 I2

The table shows that G is closed under matrix multiplication, so this is a binary operation.
Matrix multiplication is always associative as we saw before, so this operation is associative.
The element I2 is an identity. Finally, each element has an inverse for matrix multiplication.
I, S2,X, Y, T,D are their own inverses, while S−1 = S3 and (S3)−1 = S.

2. a. Let G = Z12 under the operation of addition modulo 12. Determine the cyclic subgroups
〈[a]〉 for all [a] ∈ Z12.

Solution: We have

〈[0]〉 = {[0]}

〈[1]〉 = Z12 = 〈[5]〉 = 〈[7]〉 = 〈[11]〉

〈[2]〉 = {[0], [2], [4], [6], [8], [10]} = 〈[10]〉

〈[3]〉 = {[0], [3], [6], [9]} = 〈[9]〉

〈[4]〉 = {[0], [4], [8]} = 〈[8]〉

〈[6]〉 = {[0], [6]}
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b. Conjecture a general formula for the number of elements in 〈[a]〉 in terms of the integers
a and 12. Check out your conjecture on the corresponding list of cyclic subgroups of Z20

constructed in class on November 14.

Solution: The pattern that fits all of these examples is that the number of elements in
〈[a]〉 ⊆ Zn is equal to n/ gcd(a, n). For instance, with n = 12 and a = 10, we have
gcd(10, 12) = 2, and 〈[10]〉 has 12/2 = 6 elements. Moreover, all the a with the same
gcd(a, n) apparently generate the same cyclic subgroup. Comment: These patterns do
hold in general and we will prove them shortly.

‘B’ Section

1. Let

G =











0 a b
0 0 c
0 0 0



 | a, b, c ∈ R







Show that G is a group under the operation of matrix addition.

Solution: We know that M3×3(R) is a group under matrix addition. So a sneaky method here
is to apply the “shortcut method” of Theorem 3.10 in the text to show that G is a subgroup
of M3×3(R). G is definitely nonempty since it contains elements for all triples a, b, c of real
numbers. Next, if

X =





0 a b
0 0 c
0 0 0



 and Y =





0 a′ b′

0 0 c′

0 0 0





are in G, then

X − Y =





0 a − a′ b − b′

0 0 c − c′

0 0 0



 ∈ G

as well. Therefore G is a subgroup of M3×3(R), hence a group.

2. Let

G =











1 a b
0 1 c
0 0 1



 | a, b, c ∈ R







Is G is a group under the operation of matrix multiplication. If so, say why; if not say which
properties in the definition fail.

Solution: We know that GL3(R) is a group under matrix multiplication. So a sneaky method
here is to apply the “shortcut method” of Theorem 3.10 in the text to show that G is a
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subgroup of GL3(R). G is definitely nonempty since it contains elements for all triples a, b, c
of real numbers. Next, if

X =





1 a b
0 1 c
0 0 1



 and Y =





1 a′ b′

0 1 c′

0 0 1





are in G, then

Y −1 =





1 −a′ a′c′ − b′

0 1 −c′

0 0 1



 .

Hence

XY −1 =





1 a − a′ a′c′ − b′ − ac′ + b
0 1 c − c′

0 0 1



 ∈ G

as well. Therefore G is a subgroup of GL3(R), hence a group.

3. Let G be a group, and consider the relation R on G defined by xRy ↔ y = axa−1 for some
a ∈ G. (If xRy is true, the a that works in the equation will depend on x, y.) R is called the
conjugacy relation on G.

a. Show that conjugacy is an equivalence relation on G.

Solution: For all x ∈ G, we have xRx since x = exe−1. Therefore R is reflexive. If xRy,
then y = axa−1. If we multiply both sides of this equality by a−1 on the left and a on
the right, we get x = a−1ya = a−1y(a−1)−1. It follows that yRx is also true, so R is
symmetric. Finally, if xRy and yRz, then y = axa−1 and z = byb−1 for some a, b ∈ G.
Substituting, we get z = b(axa−1)b−1 = (ba)x(ba)−1 by associativity and the reverse
order law for inverses. Therefore R is transitive.

b. Show that G is an abelian group if and only if the equivalence classes for the conjugacy
relation satisfy [x] = {x} for all x ∈ G.

Solution: We have [x] = {x} if and only if x = axa−1 for all a ∈ G, or equivalently if
and only if xa = ax. This is true for all classes [x] if and only if xa = ax for all a and
all x in G. That is the same as saying the operation in G is commutative, or that G is
an abelian group.

c. More generally, show that if [x] = {x} for some element x ∈ G, then xa = ax for all
a ∈ G and conversely. The set of such elements x is called the center of G: The center
is the subset of G defined by:

Z(G) = {x ∈ G | xa = ax for all a in G}.

Solution: One direction is essentially the same as the argument for part of the proof of
part b, except we are no longer assuming that [x] = {x} holds for all x ∈ G, just for
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some particular x ∈ G. This proof is “reversible,” so it can be phrased like this:

[x] = {x} ⇔ x = axa−1 for all a ∈ G

⇔ xa = axa−1a for all a ∈ G

⇔ xa = ax(a−1a) for all a ∈ G, by associativity

⇔ xa = axe for all a ∈ G, by definition of inverse

⇔ xa = ax for all a ∈ G, by definition of identity element.

Hence [x] = {x} if and only if x ∈ Z(G), the center of G.

d. Show that the center of G (as defined in part c) is a subgroup of G.

Solution: We again use the criterion of Theorem 3.10: Z(G) is not empty since it always
contains the identity element e ∈ G – recall ex = x = xe for all x ∈ G. Next, let
x, y ∈ Z(G), then xa = ax and ya = ay for all a ∈ G. But then y−1yay−1 = y−1ayy−1

as well so ay−1 = y−1a for all a ∈ G. Hence by associativity and this last observation,
for all a ∈ G:

(xy−1)a = x(y−1a) = x(ay−1) = (xa)y−1 = (ax)y−1 = a(xy−1).

This shows xy−1 ∈ Z(G), so Z(G) is a subgroup of G.

e. Let x ∈ G be a fixed element and define Cx = {a ∈ G | x = axa−1}. Show that Cx is a
subgroup of G (Cx is called the centralizer of x).

Solution: The idea of the proof is similar to that of the proof of part d. First, Cx

is not empty since Cx contains at least the identity element. Let a, b ∈ Cx. Then
x = axa−1 = bxb−1. It also follows by multiplying both sides of the equality x = bxb−1

by b−1 on the left and b on the right that b−1xb = x. But then by the reverse order law
and associativity,

(ab−1)x(ab−1)−1 = ab−1xba−1 = a(b−1xb)a−1 = axa−1 = x.

It follows that ab−1 ∈ Cx, so Cx is a subgroup by Theorem 3.10.

f. Let G = S(A) be the group of permutations of A = {a, b, c}. Using the names for the
elements of this group we introduced in Problem Set 3, find all of the equivalence classes
for the conjugacy relation on G (there are three of them), determine the centralizer of
each element of G, and the center of G. How are the sizes of the equivalence class of x
and the number of elements of the centralizer of x related in each case?

Solution: Recall that S(A) = {IA, Ra, Rb, Rc, C1, C2}. Computing we find that there are
exactly three conjugacy classes:

[IA] = {IA}

[Ra] = {Ra, Rb, Rc} = [Rb] = [Ra]

[C1] = {C1, C2}
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To start, since IA is the identity element of this group, which commutes with every
element, it follows from part c above, that [IA] = {IA}. The rest can be read off from
the operation table you derived in Problem Set 3. For example,

Rb = Rc ◦ Ra ◦ R−1

c ,

so Rb ∈ [Ra]. Similarly
Rc = Rb ◦ Ra ◦ R−1

b
,

so Rc ∈ [Ra]. On the other hand conjugating C1 or C2 by any element of S(A) always
yields either C1 or C2, so those elements form another conjugacy class. The centralizers
are as follows:

CIA
= S(A)

CC1
= CC2

= {IA, C1, C2}

CRa
= {IA, Ra}

CRb
= {IA, Rb}

CRc
= {IA, Rc}.

(For instance, from the group table for S(A), we see I, C1, C2 all commute with C1, but
Ra ◦ C1 = Rb 6= Rc = C1 ◦ Ra, Rb ◦ C1 = Rc 6= Ra = C1 ◦ Rb, and Rc ◦ C1 = Ra 6=
Rb = C1 ◦Rc. These computations show that none of Ra, Rb, Rc are in the centralizer of
C1.) In each case, the product of the size of the conjugacy class times the order of the
centralizer equals 6 = |S(A)|. (Equivalently, the size of the conjugacy class of x is 6

|Cx|

in each case.)

4. Let H and K be subgroups of a group G.

a. Show that H ∩ K is also subgroup of G.

Solution: Both H and K contain e, so H∩K 6= ∅. Next, let x, y ∈ H∩K, then xy−1 ∈ H
since H is a subgroup. Similarly xy−1 ∈ K since K is a subgroup. Thus xy−1 ∈ H ∩K.
It follows that H ∩ K is a subgroup of G by Theorem 3.10.

b. Find an example where H∪K is a subgroup of G and one where H∪K is not a subgroup
of G.

Solution: Consider the subgroups H = {IA, Ra} and K = {IA, Rb} of S(A) from question
3f above. H∪K is not a subgroup of S(A) because H∪K is not closed under composition
Ra◦Rb = C1 /∈ H∪K. On the other hand if H = K, then H∪K = H = K is a subgroup.
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