Mathematics 243, section 3 — Algebraic Structures
Problem Set 6
due: October 26, 2012

‘A’ Section

1. Solve each of the following congruences for x € Z, with 0 < x < n. Note that in each case it
is possible to rewrite the given congruence in the form az = b (mod n) with ged(a,n) = 1.

a. 7r =13 (mod 24)

Solution: Since ged(7,24) = 1, there exist integers m,n such that 7m + 24n = 1.
Applying the Generalized Euclidean Algorithm, the smallest pair m,n that works here
is m =7 and n = 2. This says that 7-7=1 (mod 24). So multiplying both sides of the
congruence by 7, we get x = 91 = 19 (mod 24). The solution with 0 < z < 24 is z = 19.
b. 14z 4+ 25 =3 (mod 393)

Solution: The congruence can be rewritten as 14z = —22 (mod 393) = 371 (mod 393)
Since ged(14,393) = 1, there exist integers m,n such that 14m + 393n = 1. Applying
the Generalized Euclidean Algorithm, the smallest pair m, n that works here is m = —28
and n = 1. This says that 14 - —28 = 1 (mod 393). So multiplying both sides of the
congruence 14x = —22 (mod 393) by —28, we get * = 616 = 223 (mod 393). The
solution with 0 < x < 393 is x = 223.

2. What is the ones digit in 43'5? Hint: consider 43'5 (mod 10) and use Theorem 2.22 in the
text, or problem B 4 below.

Solution: We have 43 = 3 (mod 10), and computing using Theorem 2.22 or problem B 4
below we see

432°=32=9 (mod 10)43*=3>=7 (mod 10)43* =31 =1 (mod 10)

Hence the ones digits of the powers of 43 form a cycle of length 4: 3,9,7,1,3,9,7,1,---. After
15 terms we will have gone through three full cycles and 3 more terms in the fourth cycle, so

4315 = 31 = 315 (mod4) (1154 10) = 3% (mod 10) =7 (mod 10).

3. Find a positive integer = that satisfies the two simultaneous congruences

2r+1=5 (mod9)
3r+4=8 (mod 10)

Explain your method.



4. Proceeding as in question 1 above (but omitting the calculations which are much simpler), we
see that z satisfies the first congruence if 2z =4 (mod 9). Since 2-5 =1 (mod 9), we have
x =2 (mod 9). This says that x = 2 + 9k for some k € Z. Similarly, the second congruence
says 3x = 4 (mod 10), and 3-7 =1 (mod 10), so x = 8 (mod 10), so z = 6 + 10¢ for some
{ € Z. Among the integers = = 2,11, 20, 29, 38,47, 56, - - - , satisfying the first congruence, we
see that z = 38 also satisfies the second. Note that any x = 38 4+ 90m is another solution.

‘B’ Section
1. A least common multiple, or lcm, of two nonzero integers a, b is a positive integer m such that

e alm and blm, and

e alc and b|c imply m|c.

Part a below will show that lem’s always exist, and part b asks you to derive a method for
computing them via prime factorizations.

a. Show that if a,b > 0, and d = ged(a, b) with a = day and b = dby, then m = dagbg is a
least common multiple of a, b.

Proof: Note that d > 0 by definition. Since a,b > 0, then it is clear that ag, by > 0 too, so
dapby > 0 is also true. We have m = (dag)by = aby so a|m. Similarly, by commutativity
and associativity of multiplication in Z, m = (dbp)ag = bag. Hence bjm. Finally, we
must show that if a|c and b|e, then (dagby)|c. It will be convenient to state and prove
the following special case of what we are trying to prove first:

Lemma 1 Let ged(ag,by) =1 and assume that aglc and by|lc. Then (agbg)|c.

The proof of the lemma is as follows: Since ag|c and bg|c, we have ¢ = agq = bpq’ for
some integers ¢, q’. Since ged(ag,by) = 1, we have 1 = lag + kby for some integers ¢, k.
But then multiplying both sides of the last equation by ¢, we have ¢ = fagq + kbog, so

q = lc+ kboq = lboq’ + kboq = bo(Lq' + kq)
This shows that bg|q. Hence (agbo)|c.//

Now we return to the main statement to be proved. Since d = ged(a,b), in the fac-
torizations a = dag and b = dby, it must be the case that ged(ap,bp) = 1 (do you
see why?) To apply the lemma, we can argue as follows. If a|c and blc, then d|c
as well, so ¢ = dagq = dbyq’ for some integers q,q'. By cancellation, this implies
apq = boq' = ¢ = ¢/d. By the lemma, (apbp)|c’. Hence (dagbo)|c.

b. Deduce from part a that md = ab.

Proof: This follows immediately since by commutativity and associativity of multiplica-
tion, md = (dagbo)d = (apd)(bod) = ab.



c¢. Describe a method for computing a least common multiple of a,b from their standard
form factorizations as on page 92 of the text.

Proof: Suppose that pq,...,pr are all the primes appearing in the standard form factor-
izations of a or b or both. Then a = £p7* ---pi* and b = ip{l .- 'pi’c for some exponents
i, fi > 0. The lcm of a,b is the integer with standard form factorization

lem(a, b) = py™ - pp'*
where M; = max(e;, f;) for each 1 <1i < k.

2. In this problem, you will derive another result first found by the Pythagorean philosophers
in ancient Greece. Let a,b be relatively prime integers.

a. Arguing by contradiction, use the fact that 2 is a prime number and Euclid’s Lemma to
show that it is never the case that a? = 2b2.

Proof: By Euclid’s Lemma, since 2|(2b?), we have 2|a, or a = 2¢ for some integer q.
But then 4|a?, so we have an equation 4¢> = 2b%. By the cancellation law in Z, we can
write 2¢> = b?. Now we repeat the same argument. Since 2|b%, it must be true that
2|b by Euclid’s Lemma. But then 2|a and 2|b so a,b cannot be relatively prime. This
contradiction shows that there is no equation a? = 2b? with a,b € Z.

b. Explain why the result of part a shows that v/2 € R is not a rational number.

Proof: If /2 € Q, then we would have an equation v2 = 7 where a,b € Z and b #
0. Moreover, recall that by cancelling common factors between the numerator and
denominator, any rational number can be written as a fraction in lowest terms. So we
can assume gcd(a,b) = 1. But then squaring both sides and multiplying by 4% would

give 2b? = 2. This is not possible by part a. Therefore, /2 ¢ Q.

Comments:

i. Here’s an example of a lowest terms fraction. We have 22 = 3 in lowest terms,

1600 20
since 240 = 3 - 80 and 1600 = 20 - 80.
ii. A possibly fictional story runs that Hippasus of Metapontum (one of the Pythagore-
ans) was murdered by his colleagues for divulging this terrible secret(!) At the time,
only rational numbers were accepted as valid objects for mathematical reasoning.

3. Let b > 1 be an integer. Show that every nonnegative integer n can be written in the form
n=dy+db+db?+ - +d,b™

where 0 < d; < b for all i. (The resulting expansion is called the base-b ezpansion of n, and
the d; are called the base-b digits of n. The usual choice for us is b = 10, but any other base
b > 1 works just as well.) Hints: Let m be the largest non-negative integer such that b < n,
and divide b into n. If you are clever you can then apply an induction hypothesis to finish
the proof.



Proof: We use the method of Proof by Complete Induction (see page 75 in the text). For the
base case n = 0, we have 0 = 0+0-b+ - - -, which has the required form. (In other words, all
the digits are 0.) Now assume that the statement has been proved for all integers n < k and
consider n = k. Since b > 1, the powers b’ for £ € Z* grow without any bound. Hence there
will be some ¢ = m such that

A L (1)
Apply the division algorithm to divide k by ™. We get
k=qb™ +r

where 0 < r < b™. Moreover, by (1), 1 < ¢ < b, so ¢ = d,, will be one of our base b
digits. Finally since r < 0™ < k, we can also apply our induction hypothesis to r, and write
r=dy+dib+ -+ dy_1b™ . Therefore

E=r+q™ =dy+dib+ -+ dp_10™ !+ d,b"

as required. (Note that since r < ™, in its base b expansion, only powers of b up to b can
appear. Moreover,

b= +b=—1b+-4+b-1)"=0b-1)1+b+ -+ ) =pm—-1

bm—l

so no number > b can be written using only powers and smaller.)

. Give a direct proof (i.e. one not appealing to Theorem 2.22 in the text) of the following
statements: If @ = b (mod n) and ¢ = d (mod n), then a + ¢ = b+ d (mod n) and ac = bd
(mod n).

Proof: The given information is equivalent to saying a = b + kn and ¢ = d + ¢n for some
integers k,¢. Therefore a +c¢=b+d+ (k+ {)n, so (a+¢c) — (b + d) = (k + ¢)n. Hence by
definition, a + ¢ = b+ d (mod n). Similarly

ac = (b+ kn)(d + ¢n) = bd + n(bl + dk + nkl).
This implies ac — bd = n(bl + dk + nkl). By definition, ac = bd (mod n).

. Show that if m is any integer, then exactly one of the following statements is true: m? = 0
(mod 8), m? =1 (mod 8), or m? =4 (mod 8).

Proof: Every integer m satisfies one of the congruences m = k (mod 8) for k = 0,1,2,3,4,5,6,
or 7. By Exercise B 4 above, then, m? = k% (mod 8). If k = 0,4, then ¥ =0 (mod 8). (For
instance, if K =4 (mod 8), then k& = 8/ + 4 for some integer ¢. But then

k? = 640% + 640+ 16 = 8(82 +8(+2) =0 (mod 8).0

Similarly, if k = 1,3,5,7, then k2 =1 (mod 8). Finally, if £ = 2,6, then k? =4 (mod 8).



