
Mathematics 243, section 3 – Algebraic Structures
Problem Set 6

due: October 26, 2012

‘A’ Section

1. Solve each of the following congruences for x ∈ Z, with 0 ≤ x < n. Note that in each case it
is possible to rewrite the given congruence in the form ax ≡ b (mod n) with gcd(a, n) = 1.

a. 7x ≡ 13 (mod 24)

Solution: Since gcd(7, 24) = 1, there exist integers m,n such that 7m + 24n = 1.
Applying the Generalized Euclidean Algorithm, the smallest pair m,n that works here
is m = 7 and n = 2. This says that 7 · 7 ≡ 1 (mod 24). So multiplying both sides of the
congruence by 7, we get x ≡ 91 ≡ 19 (mod 24). The solution with 0 ≤ x < 24 is x = 19.

b. 14x + 25 ≡ 3 (mod 393)

Solution: The congruence can be rewritten as 14x ≡ −22 (mod 393) ≡ 371 (mod 393)
Since gcd(14, 393) = 1, there exist integers m,n such that 14m + 393n = 1. Applying
the Generalized Euclidean Algorithm, the smallest pair m,n that works here is m = −28
and n = 1. This says that 14 · −28 ≡ 1 (mod 393). So multiplying both sides of the
congruence 14x ≡ −22 (mod 393) by −28, we get x ≡ 616 ≡ 223 (mod 393). The
solution with 0 ≤ x < 393 is x = 223.

2. What is the ones digit in 4315? Hint: consider 4315 (mod 10) and use Theorem 2.22 in the
text, or problem B 4 below.

Solution: We have 43 ≡ 3 (mod 10), and computing using Theorem 2.22 or problem B 4
below we see

432 ≡ 32 ≡ 9 (mod 10)433 ≡ 33 ≡ 7 (mod 10)434 ≡ 34 ≡ 1 (mod 10)

Hence the ones digits of the powers of 43 form a cycle of length 4: 3, 9, 7, 1, 3, 9, 7, 1, · · · . After
15 terms we will have gone through three full cycles and 3 more terms in the fourth cycle, so

4315 ≡ 315 ≡ 315 (mod 4) (mod 10) ≡ 33 (mod 10) ≡ 7 (mod 10).

3. Find a positive integer x that satisfies the two simultaneous congruences

2x + 1 ≡ 5 (mod 9)

3x + 4 ≡ 8 (mod 10)

Explain your method.
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4. Proceeding as in question 1 above (but omitting the calculations which are much simpler), we
see that x satisfies the first congruence if 2x ≡ 4 (mod 9). Since 2 · 5 ≡ 1 (mod 9), we have
x ≡ 2 (mod 9). This says that x = 2 + 9k for some k ∈ Z. Similarly, the second congruence
says 3x ≡ 4 (mod 10), and 3 · 7 ≡ 1 (mod 10), so x ≡ 8 (mod 10), so x = 6 + 10ℓ for some
ℓ ∈ Z. Among the integers x = 2, 11, 20, 29, 38, 47, 56, · · · , satisfying the first congruence, we
see that x = 38 also satisfies the second. Note that any x = 38 + 90m is another solution.

‘B’ Section

1. A least common multiple, or lcm, of two nonzero integers a, b is a positive integer m such that

• a|m and b|m, and

• a|c and b|c imply m|c.

Part a below will show that lcm’s always exist, and part b asks you to derive a method for
computing them via prime factorizations.

a. Show that if a, b > 0, and d = gcd(a, b) with a = da0 and b = db0, then m = da0b0 is a
least common multiple of a, b.

Proof: Note that d > 0 by definition. Since a, b > 0, then it is clear that a0, b0 > 0 too, so
da0b0 > 0 is also true. We have m = (da0)b0 = ab0 so a|m. Similarly, by commutativity
and associativity of multiplication in Z, m = (db0)a0 = ba0. Hence b|m. Finally, we
must show that if a|c and b|c, then (da0b0)|c. It will be convenient to state and prove
the following special case of what we are trying to prove first:

Lemma 1 Let gcd(a0, b0) = 1 and assume that a0|c and b0|c. Then (a0b0)|c.
The proof of the lemma is as follows: Since a0|c and b0|c, we have c = a0q = b0q

′ for
some integers q, q′. Since gcd(a0, b0) = 1, we have 1 = ℓa0 + kb0 for some integers ℓ, k.
But then multiplying both sides of the last equation by q, we have q = ℓa0q + kb0q, so

q = ℓc + kb0q = ℓb0q
′ + kb0q = b0(ℓq

′ + kq)

This shows that b0|q. Hence (a0b0)|c.//

Now we return to the main statement to be proved. Since d = gcd(a, b), in the fac-
torizations a = da0 and b = db0, it must be the case that gcd(a0, b0) = 1 (do you
see why?) To apply the lemma, we can argue as follows. If a|c and b|c, then d|c
as well, so c = da0q = db0q

′ for some integers q, q′. By cancellation, this implies
a0q = b0q

′ = c′ = c/d. By the lemma, (a0b0)|c′. Hence (da0b0)|c.
b. Deduce from part a that md = ab.

Proof: This follows immediately since by commutativity and associativity of multiplica-
tion, md = (da0b0)d = (a0d)(b0d) = ab.
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c. Describe a method for computing a least common multiple of a, b from their standard
form factorizations as on page 92 of the text.

Proof: Suppose that p1, . . . , pk are all the primes appearing in the standard form factor-
izations of a or b or both. Then a = ±pe1

1 · · · pek

k and b = ±pf1

1 · · · pfk

k for some exponents
ei, fi ≥ 0. The lcm of a, b is the integer with standard form factorization

lcm(a, b) = pM1

1 · · · pMk

k

where Mi = max(ei, fi) for each 1 ≤ i ≤ k.

2. In this problem, you will derive another result first found by the Pythagorean philosophers
in ancient Greece. Let a, b be relatively prime integers.

a. Arguing by contradiction, use the fact that 2 is a prime number and Euclid’s Lemma to
show that it is never the case that a2 = 2b2.

Proof: By Euclid’s Lemma, since 2|(2b2), we have 2|a, or a = 2q for some integer q.
But then 4|a2, so we have an equation 4q2 = 2b2. By the cancellation law in Z, we can
write 2q2 = b2. Now we repeat the same argument. Since 2|b2, it must be true that
2|b by Euclid’s Lemma. But then 2|a and 2|b so a, b cannot be relatively prime. This
contradiction shows that there is no equation a2 = 2b2 with a, b ∈ Z.

b. Explain why the result of part a shows that
√

2 ∈ R is not a rational number.

Proof: If
√

2 ∈ Q, then we would have an equation
√

2 = a
b

where a, b ∈ Z and b 6=
0. Moreover, recall that by cancelling common factors between the numerator and
denominator, any rational number can be written as a fraction in lowest terms. So we
can assume gcd(a, b) = 1. But then squaring both sides and multiplying by b2 would
give 2b2 = a2. This is not possible by part a. Therefore,

√
2 /∈ Q.

Comments:

i. Here’s an example of a lowest terms fraction. We have 240
1600 = 3

20 in lowest terms,
since 240 = 3 · 80 and 1600 = 20 · 80.

ii. A possibly fictional story runs that Hippasus of Metapontum (one of the Pythagore-
ans) was murdered by his colleagues for divulging this terrible secret(!) At the time,
only rational numbers were accepted as valid objects for mathematical reasoning.

3. Let b > 1 be an integer. Show that every nonnegative integer n can be written in the form

n = d0 + d1b + d2b
2 + · · · + dmbm

where 0 ≤ di < b for all i. (The resulting expansion is called the base-b expansion of n, and
the di are called the base-b digits of n. The usual choice for us is b = 10, but any other base
b > 1 works just as well.) Hints: Let m be the largest non-negative integer such that bm ≤ n,
and divide bm into n. If you are clever you can then apply an induction hypothesis to finish
the proof.
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Proof: We use the method of Proof by Complete Induction (see page 75 in the text). For the
base case n = 0, we have 0 = 0 + 0 · b+ · · · , which has the required form. (In other words, all
the digits are 0.) Now assume that the statement has been proved for all integers n < k and
consider n = k. Since b > 1, the powers bℓ for ℓ ∈ Z+ grow without any bound. Hence there
will be some ℓ = m such that

bm ≤ k < bm+1. (1)

Apply the division algorithm to divide k by bm. We get

k = qbm + r

where 0 ≤ r < bm. Moreover, by (1), 1 ≤ q < b, so q = dm will be one of our base b
digits. Finally since r < bm ≤ k, we can also apply our induction hypothesis to r, and write
r = d0 + d1b + · · · + dm−1b

m−1. Therefore

k = r + qbm = d0 + d1b + · · · + dm−1b
m−1 + dmbm

as required. (Note that since r < bm, in its base b expansion, only powers of b up to bm can
appear. Moreover,

(b − 1) + (b − 1)b + · · · + (b − 1)bm−1 = (b − 1)(1 + b + · · · + bm−1) = bm − 1

so no number ≥ bm can be written using only powers bm−1 and smaller.)

4. Give a direct proof (i.e. one not appealing to Theorem 2.22 in the text) of the following
statements: If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n) and ac ≡ bd
(mod n).

Proof: The given information is equivalent to saying a = b + kn and c = d + ℓn for some
integers k, ℓ. Therefore a + c = b + d + (k + ℓ)n, so (a + c) − (b + d) = (k + ℓ)n. Hence by
definition, a + c ≡ b + d (mod n). Similarly

ac = (b + kn)(d + ℓn) = bd + n(bℓ + dk + nkℓ).

This implies ac − bd = n(bℓ + dk + nkℓ). By definition, ac ≡ bd (mod n).

5. Show that if m is any integer, then exactly one of the following statements is true: m2 ≡ 0
(mod 8), m2 ≡ 1 (mod 8), or m2 ≡ 4 (mod 8).

Proof: Every integer m satisfies one of the congruences m ≡ k (mod 8) for k = 0, 1, 2, 3, 4, 5, 6,
or 7. By Exercise B 4 above, then, m2 ≡ k2 (mod 8). If k ≡ 0, 4, then k2 ≡ 0 (mod 8). (For
instance, if k ≡ 4 (mod 8), then k = 8ℓ + 4 for some integer ℓ. But then

k2 = 64ℓ2 + 64ℓ + 16 = 8(8ℓ2 + 8ℓ + 2) ≡ 0 (mod 8).0

Similarly, if k ≡ 1, 3, 5, 7, then k2 ≡ 1 (mod 8). Finally, if k ≡ 2, 6, then k2 ≡ 4 (mod 8).
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