
Mathematics 243, section 3 – Algebraic Structures
Solutions for Problem Set 5

due: October 19, 2012

‘A’ Section

1. Apply the division algorithm to find q, r satisfying a = qb + r and 0 ≤ r < b:

a. a = 326, b = 17

Solution: 326 = 19 · 17 + 3, so q = 19 and r = 3.

b. a = 1245, b = 249

Solution: 1245 = 5 · 249, so q = 5 and r = 0. (Note this shows 249|1245).

c. a = −3432, b = 29.

Solution: −3432 = −119 · 29 + 19, so q = −119 and r = 19.

2. a. Find all the positive common divisors of a = 240 and b = 450. (Hint: Factoring a, b as
much as possible may be helpful here.)

Solution: We have 240 = 24 · 3 · 5 and 450 = 2 · 32 · 52. So the common divisors of 240
and 450 are 1, 2, 3, 5, 6, 10, 15, 30.

b. What is the smallest positive element of the set

S = {240m + 450n | m,n ∈ Z}?

Solution: By Theorem 2.12, this number is gcd(240, 450) = 30.

c. Apply the Euclidean algorithm to find gcd(240, 450). What are the integers m,n such
that 240m + 450n = gcd(240, 450)?

Solution: Computing by the Euclidean process:

450 = 1 · 240 + 210

240 = 1 · 210 + 30

210 = 7 · 30 + 0.

The last nonzero remainder is 30, so gcd(240, 450) = 30. By the “back-substitution”
method, we have

30 = 240 − 1 · 210

= 240 − 1 · (450 − 1 · 240)

= 2 · 240 + (−1) · 450.

So m = 2 and n = −1.
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3. Repeat all the parts of question 2 for a = 2312 and b = 584.

a. Find all the positive common divisors of a = 2312 and b = 584. (Hint: Factoring a, b as
much as possible may be helpful here.)

Solution: We have 2312 = 23 · 172 and 584 = 23 · 73. So the common divisors of 2312
and 584 are 1, 2, 4, 8.

b. What is the smallest positive element of the set

S = {2312m + 584n | m,n ∈ Z}?

Solution: By Theorem 2.12, this number is gcd(2312, 584) = 8.

c. Apply the Euclidean algorithm to find gcd(2312, 584). What are the integers m,n such
that 584m + 2312n = gcd(2312, 584)?

Solution: Computing by the Euclidean process:

2312 = 3 · 584 + 560

584 = 1 · 560 + 24

560 = 23 · 24 + 8

24 = 3 · 8 + 0.

The last nonzero remainder is 8, so gcd(2312, 584) = 8. By the “back-substitution”
method, we have

8 = 560 − 23 · 24

= 560 − 23 · (584 − 1 · 560)

= 24 · 560 − 23 · 584

= 24 · (2312 − 3 · 584) − 23 · 584

= 24 · 2312 − 95 · 584.

So n = −95 and m = 24.

‘B’ Section

1. Let f, g, h be permutations of a set A. In this problem, the notation h0 = IA, the identity
mapping on A, and for n ≥ 1, hn means the n-fold composition of h with itself:

hn = h ◦ h ◦ · · · ◦ h (n copies of h).

a. Show by mathematical induction that hn is a permutation of A for all n ≥ 0. You may
use facts we proved before here; look back at Chapter 1 or your notes as necessary.
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Solution: The base case here is n = 0 and h0 = IA by definition. This is a permutation
of A since it is one-to-one and onto. Now assume that hk is a permutation and consider
hk+1 = hk ◦ h. By the induction hypothesis this is a composition of permutations of A.
But every composition of permutations of A is also a permutation of A by Theorems
1.16 and 1.17 (in the special case that A = B = C).

b. Show that for all n ≥ 1
(f ◦ g ◦ f−1)n = f ◦ gn ◦ f−1.

Solution: When n = 1, there is nothing to prove, since f ◦ g ◦ f−1 = f ◦ g ◦ f−1. So the
base case is established. Now assume that (f ◦ g ◦ f−1)k = f ◦ gk ◦ f−1 and consider
(f ◦ g ◦ f−1)k+1:

(f ◦ g ◦ f−1)k+1 = (f ◦ g ◦ f−1)k ◦ (f ◦ g ◦ f−1) by the def.

= (f ◦ gk ◦ f−1) ◦ (f ◦ g ◦ f−1) by the induction hypothesis

= f ◦ gk ◦ (f−1 ◦ f) ◦ g ◦ f−1 by associativity of composition

= f ◦ gk ◦ IA ◦ g ◦ f−1 by definition of inverse mappings

= f ◦ gk ◦ g ◦ f−1 by associativity and identity

= f ◦ gk+1 ◦ f−1 by definition.

Hence the formula is true for all n ≥ 1 by induction.

2. Let a, b, c, d ∈ Z.

a. Show that if a|c and b|d, then (ab)|(cd).

Solution: If a|c then there is some integer k such that c = ak. Similarly, since b|d, there
is some integer ℓ such that d = bℓ. Hence cd = (ak)(bℓ) = (ab)(kℓ) by associativity and
commutativity of multiplication in Z. Since kℓ ∈ Z, this shows (ab)|(cd).

b. Is it true that a|(bc) implies a|b or a|c? Prove or give a counterexample.

Solution: This is not true. A counterexample: Let a = 4, b = 6, c = 10. Then 4|60 is
true, but 4 does not divide either 6 or 10.

c. Give two different proofs that (a − b)|(an − bn) for all n ≥ 1, one using mathematical
induction, one not using mathematical induction.

Solution: Induction proof: The statement is clearly true for n = 1, so the base case is
established. Assume that (a − b)|(ak − bk) and consider ak+1 − bk+1. We can apply the
induction hypothesis by rewriting this by “adding zero,” then rearranging:

ak+1 − bk+1 = ak+1 − akb + akb − bk+1

= ak(a − b) + b(ak − bk).

By the induction hypothesis a − b divides ak − bk and a − b clearly divides the first
part. Hence by a result proved in class, it follows that (a− b) divides the sum and hence
(a − b)|(ak+1 − bk+1). This proves the statement by induction.
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Noninduction proof: First we show the factorization formula for a difference of like
powers. We claim:

an − bn = (a − b)(an−1 + an−2b + · · · + abn−2 + bn−1)

This is true because if we start on the right and expand out using the distributive law
we get

(a − b)(an−1 + an−2b + · · · + abn−2 + bn−1) = an + an−1b + · · · + a2bn−2 + abn−1

− an−1b − · · · − abn−1 − bn

= an − bn,

since all the terms except the an and the −bn cancel in pairs. Now, in the factored form,
the second factor in the formula is in Z because a, b are. So this shows (a− b)|(an − bn).

d. Show that (a + b)|(a2n − b2n) for all n ≥ 1.

Solution: (This can be proved in a number of ways. The “slickest” is this one:) Apply
the result of part c with a replaced by a2 and b replaced by b2. Since (a2)n = a2n and
similarly for b, this gives the statement that

(a2 − b2)|(a2n − b2n)

But by the difference of squares factorization, a2 − b2 = (a + b)(a − b), so a + b divides
a2n − b2n.

3. Suppose a, b > 0 and a = qb + r by the division algorithm in Z. What are the quotient and
remainder on division of −a by b? Express in terms of q and r, and prove your result.

Solution: If a = qb + r by the division algorithm, then we can multiply both sides of that
equation by −1 to get −a = (−q)b+(−r). However, since 0 ≤ r < b, unless r = 0, the number
−r will not be in the proper range of values for the remainder on division by b. To get a
remainder in the proper range of values, we just need to note that if r 6= 0, then −b < −r < 0,
so 0 < −r + b < b. Hence From −a = (−q)b + (−r), we want to rearrange the right side by
adding and subtracting b:

−a = (−q − 1)b + (−r + b).

So by uniqueness of quotient and remainder, if r 6= 0, the quotient on division of −a by b

is −(q + 1), and the remainder is −r + b. If r = 0, then the new quotient is just −q and
the remainder is still 0 for −a. So the conclusion (and what we have proved above) is: If
a = qb + r, then −a = q′b + r′, where

q′ =

{

−q if r = 0

−(q + 1) if r 6= 0,
r′ =

{

0 if r = 0

b − r if r 6= 0.

4. Show that if a, b, c ∈ Z, then gcd(gcd(a, b), c) = gcd(a, gcd(b, c)).
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Solution: (Comment: We actually need some additional hypothesis like at least one of a, b, c

nonzero here to guarantee that the gcd’s exist.) Method 1: Let d = gcd(gcd(a, b), c). We
want to show that this integer satisfies the right properties to be gcd(a, gcd(b, c)) (from
the definition of a gcd) as well. First, since d is a gcd of two integers, d ∈ Z

+, so the
first requirement is true. Next, d| gcd(a, b) and d|c by definition. Since d| gcd(a, b), it also
follows that d|a and d|b. Then since d|b and d|c, we have d| gcd(b, c). This shows the second
requirement is true. Finally, suppose e is any common divisor of a and gcd(b, c), so e|a and
e| gcd(b, c). Since e divides gcd(b, c), e|b and e|c. But then e is a common divisor of a, b so
e| gcd(a, b) But then since e divides gcd(a, b) and c, e| gcd(gcd(a, b), c) also. This shows e|d.
Hence d = gcd(a, gcd(b, c)).

Solution: Method 2: An alternate method is to show that if we let d = gcd(gcd(a, b), c) and
d′ = gcd(a, gcd(b, c)), then d|d′ and d′|d. If we know that, then d = d′ follows since d, d′ > 0
by the definition of a gcd. If d = gcd(gcd(a, b), c), then d| gcd(a, b) and d|c, so it follows that
d|a, d|b, d|c. But then by definition of a gcd, d|a and d| gcd(b, c). Hence d|d′. The proof that
d′|d is similar.

5. Suppose gcd(a, b) = 1. Is it true that the integers m,n such that ma + nb = 1 guaranteed in
Theorem 2.12 also satisfy gcd(m,n) = 1? Prove or give a counterexample.

Solution: If gcd(a, b) = 1, then there are m,n ∈ Z such that ma + nb = 1 by Theorem 2.12.
However, this also says that the smallest positive element of the set

S = {pm + qn | p, q ∈ Z}

is 1, since we get 1 by taking p = a and q = b. Hence by the proof of Theorem 2.12,
1 = gcd(m,n) as well.
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