Mathematics 243, section 3 — Algebraic Structures
Solutions for Problem Set 5
due: October 19, 2012

‘A’ Section

1. Apply the division algorithm to find ¢, r satisfying a = ¢b+r and 0 < r < b:

a. a=326,b=17
Solution: 326 =19-17+ 3, s0 ¢ =19 and r = 3.

b. a = 1245, b = 249
Solution: 1245 = 5249, so ¢ = 5 and r = 0. (Note this shows 249|1245).

c. a=—3432, b= 29.
Solution: —3432 = —119-29 419, so ¢ = —119 and r = 19.

2. a. Find all the positive common divisors of a = 240 and b = 450. (Hint: Factoring a,b as

much as possible may be helpful here.)

Solution: We have 240 = 2% .3 -5 and 450 = 2 - 32 . 52. So the common divisors of 240
and 450 are 1,2,3,5,6, 10, 15, 30.

b. What is the smallest positive element of the set
S = {240m + 450n | m,n € Z}?

Solution: By Theorem 2.12, this number is ged (240, 450) = 30.

c. Apply the Euclidean algorithm to find ged(240,450). What are the integers m,n such
that 240m + 450n = ged(240,450)7

Solution: Computing by the Euclidean process:

450 =1 - 240 + 210
240 =1-210+4 30
210 =7-30+0.

The last nonzero remainder is 30, so ged(240,450) = 30. By the “back-substitution”
method, we have

30 =240 — 1- 210
=240 — 1- (450 — 1 - 240)
= 2240 + (—1) - 450.

Som=2andn=-1.



3. Repeat all the parts of question 2 for a = 2312 and b = 584.
a. Find all the positive common divisors of a = 2312 and b = 584. (Hint: Factoring a,b as

much as possible may be helpful here.)

Solution: We have 2312 = 23 - 172 and 584 = 23 - 73. So the common divisors of 2312
and 584 are 1,2,4,8.

b. What is the smallest positive element of the set
S ={2312m + 584n | m,n € Z}?

Solution: By Theorem 2.12, this number is ged (2312, 584) = 8.

c. Apply the Euclidean algorithm to find ged(2312,584). What are the integers m,n such
that 584m + 2312n = ged(2312,584)7

Solution: Computing by the Euclidean process:

2312 = 3 - 584 + 560
o584 =1-560 + 24
560 =23 -24 + 8
24=3-8+0.

The last nonzero remainder is 8, so gced(2312,584) = 8. By the “back-substitution”
method, we have
8 =560 —23-24
=560 — 23 - (584 — 1 - 560)
=24 -560 — 23 - 584
=24-(2312 —3-584) — 23 -584
=24-2312 — 95 - 584.

Son=-95and m = 24.

‘B’ Section

1. Let f,g,h be permutations of a set A. In this problem, the notation h® = I, the identity
mapping on A, and for n > 1, h™ means the n-fold composition of h with itself:

h"™ =hoho---oh (n copies of h).

a. Show by mathematical induction that A™ is a permutation of A for all n > 0. You may
use facts we proved before here; look back at Chapter 1 or your notes as necessary.



Solution: The base case here is n = 0 and h® = I4 by definition. This is a permutation
of A since it is one-to-one and onto. Now assume that h* is a permutation and consider
hk*+1 = h* o h. By the induction hypothesis this is a composition of permutations of A.
But every composition of permutations of A is also a permutation of A by Theorems
1.16 and 1.17 (in the special case that A = B = C).

b. Show that for all n > 1
(fogof )" =fog"of

Solution: When n = 1, there is nothing to prove, since fogo f~' = fogo f~1. So the
base case is established. Now assume that (f ogo f~)¥ = fog¢* o f~! and consider
(fogof )t
(fogof_l)k"'1 = (fogof_l)k o(fogo f~1) by the def.

=(fo g*o fYo(fogo f~1) by the induction hypothesis

= fogto(ftof)ogo f7! by associativity of composition

= fogfolsogo f~! by definition of inverse mappings

= fogfogo f~! by associativity and identity

=fo gk+1 o f~! by definition.

Hence the formula is true for all n > 1 by induction.
2. Let a,b,c,d € Z.
a. Show that if a|c and b|d, then (ab)|(cd).

Solution: If a|c then there is some integer k such that ¢ = ak. Similarly, since b|d, there
is some integer ¢ such that d = bl. Hence cd = (ak)(bl) = (ab)(kf) by associativity and
commutativity of multiplication in Z. Since k¢ € Z, this shows (ab)|(cd).

b. Is it true that a|(bc) implies alb or a|c? Prove or give a counterexample.

Solution: This is not true. A counterexample: Let a = 4, b = 6,¢ = 10. Then 4/60 is
true, but 4 does not divide either 6 or 10.

c. Give two different proofs that (a — b)|(a™ — b™) for all n > 1, one using mathematical
induction, one not using mathematical induction.

Solution: Induction proof: The statement is clearly true for n = 1, so the base case is
established. Assume that (a — b)|(a* — b¥) and consider a**! — b*+1. We can apply the
induction hypothesis by rewriting this by “adding zero,” then rearranging:

k+1 bk+1 — CLk+1 _ akb+ ak‘b _ bk‘-i—l

= a(a —b) + b(a* — bP).

a

By the induction hypothesis a — b divides a* — b* and a — b clearly divides the first
part. Hence by a result proved in class, it follows that (a —b) divides the sum and hence
(a — b)|(a*+1 — b**+1). This proves the statement by induction.



Noninduction proof: First we show the factorization formula for a difference of like
powers. We claim:

A — b =(a—b)(@" ' +a" 4 ab" 2 )

This is true because if we start on the right and expand out using the distributive law
we get

(a—=b)(@" ' +a" 2+ a0 =" +a" b+ BT e
o an—lb_ _abn—l _pn

:an_bn7

since all the terms except the o' and the —b™ cancel in pairs. Now, in the factored form,
the second factor in the formula is in Z because a,b are. So this shows (a — b)|(a™ — b").

d. Show that (a + b)|(a®* — b*") for all n > 1.

Solution: (This can be proved in a number of ways. The “slickest” is this one:) Apply
the result of part ¢ with a replaced by a? and b replaced by b?. Since (a?)" = a®" and
similarly for b, this gives the statement that

(a2 _ b2)|(a2n _ b2n)

But by the difference of squares factorization, a® — v = (a + b)(a — b), so a + b divides
2n 2n
a*™ — b,

3. Suppose a,b > 0 and a = ¢gb + r by the division algorithm in Z. What are the quotient and
remainder on division of —a by b7 Express in terms of ¢ and r, and prove your result.

Solution: If a = gb + r by the division algorithm, then we can multiply both sides of that
equation by —1 to get —a = (—q)b+ (—r). However, since 0 < r < b, unless r = 0, the number
—r will not be in the proper range of values for the remainder on division by b. To get a
remainder in the proper range of values, we just need to note that if r £ 0, then —b < —r < 0,
so 0 < —r +b < b. Hence From —a = (—¢)b+ (—r), we want to rearrange the right side by
adding and subtracting b:

—a=(—q—1)b+ (—r+0b).

So by uniqueness of quotient and remainder, if  # 0, the quotient on division of —a by b
is —(¢ + 1), and the remainder is —r +b. If » = 0, then the new quotient is just —¢ and
the remainder is still 0 for —a. So the conclusion (and what we have proved above) is: If
a = ¢b+r, then —a = ¢'b+ ', where

P itr=20 o 0 ifr=20
TV g+ itr£0, " \o—r itro.

4. Show that if a,b, ¢ € Z, then ged(ged(a,b), ¢) = ged(a, ged(b, ¢)).



Solution: (Comment: We actually need some additional hypothesis like at least one of a, b, ¢
nonzero here to guarantee that the ged’s exist.) Method 1: Let d = ged(ged(a,b),c). We
want to show that this integer satisfies the right properties to be ged(a,ged(b,c)) (from
the definition of a ged) as well. First, since d is a ged of two integers, d € ZT, so the
first requirement is true. Next, d|ged(a,b) and d|c by definition. Since d|ged(a,b), it also
follows that d|a and d|b. Then since d|b and d|c, we have d| ged(b, c). This shows the second
requirement is true. Finally, suppose e is any common divisor of a and ged(b, ¢), so e|la and
el ged (b, ¢). Since e divides ged(b, ¢), e|b and e|c. But then e is a common divisor of a,b so
el ged(a, b) But then since e divides ged(a,b) and ¢, e| ged(ged(a,b), c) also. This shows e|d.
Hence d = ged(a, ged(b, ¢)).

Solution: Method 2: An alternate method is to show that if we let d = ged(ged(a, b), ¢) and
d' = ged(a, ged (b, ¢)), then d|d and d'|d. If we know that, then d = d’ follows since d,d’ > 0
by the definition of a ged. If d = ged(ged(a, b), ¢), then d| ged(a,b) and d|c, so it follows that
d|a,d|b,d|c. But then by definition of a ged, d|a and d| ged(b, ¢). Hence d|d’. The proof that
d'|d is similar.

. Suppose ged(a,b) = 1. Is it true that the integers m,n such that ma + nb = 1 guaranteed in
Theorem 2.12 also satisfy ged(m,n) = 17 Prove or give a counterexample.

Solution: If ged(a,b) = 1, then there are m,n € Z such that ma + nb = 1 by Theorem 2.12.
However, this also says that the smallest positive element of the set

S={pm+qn|pqcZ}

is 1, since we get 1 by taking p = a and ¢ = b. Hence by the proof of Theorem 2.12,
1 = ged(m,n) as well.



