Directions

Do all work in the blue exam booklet. There are 100 possible points.
I. In an RSA public key cryptosystem, the public key information is $m=323$ and $e=13$. Messages consisting of capital roman letters and blanks are encoded as 3-digit blocks $000,001, \cdots, 026$ (with blank $=000, A=001, B=002, \ldots, Z=026$) and encrypted as 3 -digit blocks.
A) (15) How would the plaintext symbol N be encrypted?
B) (15) What is the (secret) decryption exponent d ?
II. (20) Let

$$
H=\left\{\left.A=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a, b \in \mathbf{R} \text { and } a \neq 0\right\}
$$

Is H a group under the operation of matrix multiplication? If so, give a proof. If not, say which of the group properties fail. Note: We discussed a general rule for finding the multiplicative inverse of a 2×2 matrix on a problem set earlier in the semester. If you don't remember it, you can "buy" it from me during the exam in return for a reduction of 5 points on your score for this problem.
III.
A) (15) Let G be a cyclic group with generator a. Show that every subgroup of G is also cyclic.

The next parts of this question refer to \mathbf{Z}_{24}, which is a cyclic group under addition $\bmod 24$.
B) (5) Find all of the generators of the cyclic subgroup $H=\langle[15]\rangle \subset \mathbf{Z}_{24}$.
C) (5) How many different subgroups does \mathbf{Z}_{24} contain, including \mathbf{Z}_{24} itself and $\{[0]\}$?
D) (15) Show that if $\operatorname{gcd}(a, 24)=1$, then $\phi: \mathbf{Z}_{24} \rightarrow \mathbf{Z}_{24}$ defined by $\phi([x])=[a x]$ is a 1-1 and onto group homomorphism.
IV. (10) Let G be a group, let H be a subgroup of G, and let $a \in G$ be a fixed element. Let $a H=\{a h \mid h \in H\}$. Show that $a H$ is a subgroup of G if and only if $a \in H$.

Extra Credit (10) A group G is generated by elements x, y satisfying $x^{n}=e, y^{2}=e$, and $y x=x^{n-1} y$. Show that all of the elements $x^{\ell} y$ for $\ell=0,1, \ldots, n-1$ have order 2 .

The General Pattern for 2×2 Matrix Inverses
If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then A has a inverse matrix (for multiplication) if and only if $\operatorname{det}(A)=a d-b c \neq 0$, and then

$$
A^{-1}=\left(\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right)
$$

