Mathematics 243, section 1 — Algebraic Structures
Final Examination — December 13, 2006

I. Let ¢,v : Z — Z be the mappings defined

o(z) = {Sx if z is odd

1 if z is even
_fxz+1 ifzisodd
¢<$)_{x—1 if  is even

A) (10) Is ¢ a permutation of Z? Prove your assertion.

Solution : Yes 1 is a permutation, or one-to-one (injective) and onto (surjective)
mapping from Z to itself. Suppose that ¢(z) = ¢(z’). Then z and =’ must be either
both even or both odd, since 1) maps odd integers to even integers, and even integers
to odd integers. If x, 2’ are both even, then x — 1 = 2/ — 1. Adding 1 to both sides
yields = «’. Similarly, if z, 2’ are both odd, then x +1 = 2’ + 1. Subtracting 1 from
both sides shows z = 2’ in this case too. Hence v is injective. ) is also surjective
since if y is even, then y = ¢ (x) for the odd number z = y — 1. Moreover if y is odd,
then y = v(x) for the even number z =y + 1.

B) (10) What is the mapping ¢ o 9)?

Solution :
1 if z is odd

(poy)(z) = {33;—3 if = is even

II. Let A= {1,2} and let P = {0, {1}, {2}, {1,2}} (the collection of all subsets of A). Let
+ be the binary operation on P defined by C + D = (C U D) — (C N D). For instance,

{1} +{1,2} = {1,2} - {1} = {2}.
A) (15) Compute the rest of the operation table for + on P.

Solution : The complete operation table looks like this:

+ o {1y {2} {1,2}
0 o {1 {2 {12}
{ir {1y 0 {12} {2}
{2t {2} {12} 0 {1}
{12} {1,2} {2} {13 0

B) (5) Is there an identity element for + in P. If so, what is the identity element?
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Solution : Yes. E = () acts as an identity element here. (Note: In fact from the table
above, we can see that P is even a group of order 4 under this operation!)

ITI. (10) Prove by contradiction: if A = {a1,...,a,} is a finite set and ¢ : A — A is
surjective then ¢ is also injective.

Solution : Suppose ¢ is not injective. Then there are two distinct elements of A, say
a; and a; that satisfy ¢(a;) = ¢(a;). But then there can be at most n — 1 distinct
elements in the image of ¢, so that ¢ is not onto. This contradiction shows that ¢
must be surjective.

IV.
A) (5) Let a,b be two integers, at least one of which is nonzero. Give the definition of a
ged of a, b.

Solution : d is a ged of a,b if d > 0, d|a and d|b, and if c|a and c|b, then c|d.

B) (15) Find the integer d = gcd(537,411) and express d in the form d = 537r + 411s for
some integers 7, s.

Solution : Applying the Euclidean algorithm:

037 =1-4114 126
411 = 3-126 + 33
126 = 3-33 4+ 27

33=1-274+6
27=4-6+3
6=2-3+0

Hence ged(537,411) = 3. To find the integers 7, s:

1 0

0 1
1 1 -1
3 -3 4
3 10 -—-13
1 -13 17
4 62 =81

This shows 62 - 537 + (—81) - 411 = 3.

C) (15) Assume that a, b, c are integers, d = ged(a, b), a|c and b|c. Prove that ab|cd.
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Solution : Since d = ged(a, b), as in part C, there are integers r, s such that d = ar+bs,
hence cd = car + cbs. Since alc, there is an integer g such that ¢ = ga, and similarly
there is an integer p such that ¢ = pb. Substitute as follows:
cd = car + cbs
= (pb)ar + qa(bs)
= ab(pr + qs)

Since p, 1, s, q are all integers, so is pr + ¢s, and this shows ab|cd.

D) (20) An RSA public key cryptographic system has m = 209 and encryption exponent
e = 37. What is the corresponding decryption exponent d?

Solution : Since 209 = 19- 11, we want to find d such that 37d =1 mod (19 —1)(11 —
1) = 180. Since gcd(37,180) = 1, such a d exists and we can find it by the same

process as in part C:
180 =4-37+ 32

37=1-32+5
32=6-5+2
5=2-2+1
Then

1 0

0 1
4 1 —4
1 -1 5
6 7 —-34
2 —-15 73

Hence (—15) - 180 + 73 - 37 = 1. This says d = 73.

V. (20) Prove by mathematical induction: for all real numbers a,b and all n > 1:
a b\" _ [(a® na™ b
0 a) \O a” '
Solution : The statement is clear in the base case n = 1. So assume that
a b\" _(a* ka*1b
0 a) \O ak |
a b\* a*  ka*'h a b
0 a 0 ak 0 a

aktl @k . b+ kak1b-a
0 aktl

Then

|

(ak+1 (k + mkb)

0 ak—i—l
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which is what we wanted to show.

VI. (20) Consider the set of all 2 x 2 matrices with real entries:

ngg(R):{(Z Z) :U,,b,C,dER}.

Show that May2(R) is a group under matrix addition:
a b L (e f\ _[(a+e b+ f
c d g h) \c+g d+h)’

Solution : G is closed under sums since from the above, if a,b,c,d, e, f, g, hin R, then
the sum matrix is also an element of Myy2(R). Matrix sums are associative since if
A = (a;j), B = (b;;) and C = (c;j), then the entry in row ¢ and column j in the sum
(A + B) +C is (aij + bw) + Cij = Qg5 + (bzg + Cij), using the associativity of + in R.

Hence (A+ B)+C = A+ (B + C). The zero matrix Z = (8 8) is an identity

element for matrix sums. Finally if A = <ZL
. —a —b
Als—A—<_C —d)'

VII. All parts of this question refer to the group G = Zg7, in which the operation is
addition mod 27.

2) is in GG, then the additive inverse of

A) (5) Find all generators for G.
Solution : The generators are the classes [x] with ged(x,27) =1, so

=] = [1],[2], [4], [5], [7], [8], [10], [11], [13], [14], [16], [17], [19], [20], [22], [23], [25], [26]

B) (5) Find the elements of the cyclic subgroup ([21]) in G.

Solution : By our general theorems on subgroups of cyclic groups, this is the same
subgroup as ([3]) since gcd(21,27) = 3. Hence

([21]) = {[0], [3], [6], [9], [12], [15], [18], [21], [24]}

C) (5) Find all elements of G of order 9.

Solution : These are the same as the generators of ([3]) = ([21]) from part B:
[3], [6], [12], [15], [21], [24].
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VIII. Let G and H be groups with identity elements e and ey respectively, and let
¢ : G — H be a group homomorphism.

A)

B)

C)

(15) Show that ker(y) is a subgroup of G.

Solution : Write K for ker(¢). K # () because we know ¢(eg) = eq, so eg € K. If
z,y € K, then since ¢ is a group homomorphism ¢(zy) = ¢(z)e(y) = egey = eq.
Hence zy € K so K is closed under products. Finally, let 2 € K and recall that since
¢ is a group homomorphism @(z~1) = (¢(x))~! for all z € G. If z € K, then this says
o(z7') = (eg)~! = ey. Hence K is closed under inverses too, and K is a subgroup
of G.

(5) Let ¢ € H, and let a,b € o~ 1({c}), (the inverse image under the mapping ¢).
Prove that ab™! € ker(¢p).

Solution : From the given information, ¢(a) = ¢(b) = c. Hence by the group homo-
morphism properties.

p(ab™") = p(a)p(d™") = p(a)(p®)) ' =cc! =en

Hence by definition, ab™! € K = ker(¢p).
(5) Prove that ¢ is injective if and only if ker(¢) = {eg}.

Solution : If ¢ is injective, there is only one element that maps to eg, namely eg.
Hence K = ker(¢) = {e¢} (and nothing else). Conversely, if K = ker(¢) = {eg} and
v(a) = ¢(b) for a,b € G, then reasoning as in part B, but “working backwards”

er = ¢(a)(p(b)) "' = p(ab™")

Hence ab~! € K = {eg}. This implies ab™! = eg so a = b. It follows that ¢ is
injective.

IX. (10) Let G be a group, and let z,y € G. The conjugacy relation R on G is defined
as follows. We say x and y are conjugate in G, xRy, if there exists an a € G such that
y = aza~'. Show that the conjugacy relation is an equivalence relation on G.

Solution : R is reflexive: We have x = exe™!, so xRz for all z € G (take a = e in the
definition).

R is symmetric: If zRy, then y = axa™! for some a € G. But then z = a"lya = byb—!
if we write b = a~!. Hence yRz.

R is transitive: If zRy and yRz, then y = aza~! and z = byb~! for some a,b € G
(not necessarily the same). Then if we substitute for y in the second equation,

z=blara )b~ ! = (ba)z(a"'b1) = (ba)z(ba)*

(reverse order law for inverses). This shows yRz.



