Mathematics 243, section 1 – Algebraic Structures Final Examination – December 13, 2006

I. Let $\varphi, \psi : \mathbf{Z} \to \mathbf{Z}$ be the mappings defined

$$\varphi(x) = \begin{cases} 3x & \text{if } x \text{ is odd} \\ 1 & \text{if } x \text{ is even} \end{cases}$$

$$\psi(x) = \begin{cases} x+1 & \text{if } x \text{ is odd} \\ x-1 & \text{if } x \text{ is even} \end{cases}$$

A) (10) Is ψ a permutation of **Z**? Prove your assertion.

Solution: Yes ψ is a permutation, or one-to-one (injective) and onto (surjective) mapping from \mathbf{Z} to itself. Suppose that $\psi(x) = \psi(x')$. Then x and x' must be either both even or both odd, since ψ maps odd integers to even integers, and even integers to odd integers. If x, x' are both even, then x - 1 = x' - 1. Adding 1 to both sides yields x = x'. Similarly, if x, x' are both odd, then x + 1 = x' + 1. Subtracting 1 from both sides shows x = x' in this case too. Hence ψ is injective. ψ is also surjective since if y is even, then $y = \psi(x)$ for the odd number x = y - 1. Moreover if y is odd, then $y = \psi(x)$ for the even number x = y + 1.

B) (10) What is the mapping $\varphi \circ \psi$?

Solution:

$$(\varphi \circ \psi)(x) = \begin{cases} 1 & \text{if } x \text{ is odd} \\ 3x - 3 & \text{if } x \text{ is even} \end{cases}$$

II. Let $A = \{1, 2\}$ and let $\mathcal{P} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ (the collection of all subsets of A). Let + be the binary operation on \mathcal{P} defined by $C + D = (C \cup D) - (C \cap D)$. For instance, $\{1\} + \{1, 2\} = \{1, 2\} - \{1\} = \{2\}$.

A) (15) Compute the rest of the operation table for + on \mathcal{P} .

Solution: The complete operation table looks like this:

B) (5) Is there an identity element for + in \mathcal{P} . If so, what is the identity element?

Solution: Yes. $E = \emptyset$ acts as an identity element here. (Note: In fact from the table above, we can see that \mathcal{P} is even a group of order 4 under this operation!)

III. (10) Prove by contradiction: if $A = \{a_1, \ldots, a_n\}$ is a *finite* set and $\varphi : A \to A$ is surjective then φ is also injective.

Solution: Suppose φ is not injective. Then there are two distinct elements of A, say a_i and a_j that satisfy $\varphi(a_i) = \varphi(a_j)$. But then there can be at most n-1 distinct elements in the image of φ , so that φ is not onto. This contradiction shows that φ must be surjective.

IV.

A) (5) Let a, b be two integers, at least one of which is nonzero. Give the definition of a gcd of a, b.

Solution: d is a gcd of a, b if d > 0, d|a and d|b, and if c|a and c|b, then c|d.

B) (15) Find the integer $d = \gcd(537, 411)$ and express d in the form d = 537r + 411s for some integers r, s.

Solution: Applying the Euclidean algorithm:

$$537 = 1 \cdot 411 + 126$$

$$411 = 3 \cdot 126 + 33$$

$$126 = 3 \cdot 33 + 27$$

$$33 = 1 \cdot 27 + 6$$

$$27 = 4 \cdot 6 + 3$$

$$6 = 2 \cdot 3 + 0$$

Hence gcd(537, 411) = 3. To find the integers r, s:

$$\begin{array}{ccccc} & 1 & 0 \\ & 0 & 1 \\ 1 & 1 & -1 \\ 3 & -3 & 4 \\ 3 & 10 & -13 \\ 1 & -13 & 17 \\ 4 & 62 & -81 \end{array}$$

This shows $62 \cdot 537 + (-81) \cdot 411 = 3$.

C) (15) Assume that a, b, c are integers, $d = \gcd(a, b)$, a|c and b|c. Prove that ab|cd.

Solution: Since $d = \gcd(a, b)$, as in part C, there are integers r, s such that d = ar + bs, hence cd = car + cbs. Since a|c, there is an integer q such that c = qa, and similarly there is an integer p such that c = pb. Substitute as follows:

$$cd = car + cbs$$

$$= (pb)ar + qa(bs)$$

$$= ab(pr + qs)$$

Since p, r, s, q are all integers, so is pr + qs, and this shows ab|cd.

D) (20) An RSA public key cryptographic system has m = 209 and encryption exponent e = 37. What is the corresponding decryption exponent d?

Solution: Since $209 = 19 \cdot 11$, we want to find d such that $37d \equiv 1 \mod (19-1)(11-1) = 180$. Since $\gcd(37,180) = 1$, such a d exists and we can find it by the same process as in part C:

$$180 = 4 \cdot 37 + 32$$
$$37 = 1 \cdot 32 + 5$$
$$32 = 6 \cdot 5 + 2$$
$$5 = 2 \cdot 2 + 1$$

Then

Hence $(-15) \cdot 180 + 73 \cdot 37 = 1$. This says d = 73.

V. (20) Prove by mathematical induction: for all real numbers a, b and all $n \geq 1$:

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^n = \begin{pmatrix} a^n & na^{n-1}b \\ 0 & a^n \end{pmatrix}.$$

Solution: The statement is clear in the base case n = 1. So assume that

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^k = \begin{pmatrix} a^k & ka^{k-1}b \\ 0 & a^k \end{pmatrix}.$$

Then

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^{k+1} = \begin{pmatrix} a^k & ka^{k-1}b \\ 0 & a^k \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$
$$= \begin{pmatrix} a^{k+1} & a^k \cdot b + ka^{k-1}b \cdot a \\ 0 & a^{k+1} \end{pmatrix}$$
$$= \begin{pmatrix} a^{k+1} & (k+1)a^kb \\ 0 & a^{k+1} \end{pmatrix}$$

which is what we wanted to show.

VI. (20) Consider the set of all 2×2 matrices with real entries:

$$M_{2\times 2}(\mathbf{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{R} \right\}.$$

Show that $M_{2\times 2}(\mathbf{R})$ is a group under matrix addition:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}.$$

Solution: G is closed under sums since from the above, if a,b,c,d,e,f,g,h in \mathbf{R} , then the sum matrix is also an element of $M_{2\times 2}(\mathbf{R})$. Matrix sums are associative since if $A=(a_{ij}), B=(b_{ij})$ and $C=(c_{ij})$, then the entry in row i and column j in the sum (A+B)+C is $(a_{ij}+b_{ij})+c_{ij}=a_{ij}+(b_{ij}+c_{ij})$, using the associativity of + in \mathbf{R} . Hence (A+B)+C=A+(B+C). The zero matrix $Z=\begin{pmatrix}0&0\\0&0\end{pmatrix}$ is an identity element for matrix sums. Finally if $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ is in G, then the additive inverse of A is $-A=\begin{pmatrix}-a&-b\\-c&-d\end{pmatrix}$.

VII. All parts of this question refer to the group $G = \mathbf{Z}_{27}$, in which the operation is addition mod 27.

A) (5) Find all generators for G.

Solution: The generators are the classes [x] with gcd(x, 27) = 1, so [x] = [1], [2], [4], [5], [7], [8], [10], [11], [13], [14], [16], [17], [19], [20], [22], [23], [25], [26]

B) (5) Find the elements of the cyclic subgroup $\langle [21] \rangle$ in G.

Solution: By our general theorems on subgroups of cyclic groups, this is the same subgroup as $\langle [3] \rangle$ since gcd(21, 27) = 3. Hence

$$\langle [21] \rangle = \{[0], [3], [6], [9], [12], [15], [18], [21], [24] \}$$

C) (5) Find all elements of G of order 9.

Solution: These are the same as the generators of $\langle [3] \rangle = \langle [21] \rangle$ from part B:

VIII. Let G and H be groups with identity elements e_G and e_H respectively, and let $\varphi: G \to H$ be a group homomorphism.

A) (15) Show that $ker(\varphi)$ is a subgroup of G.

Solution: Write K for $\ker(\varphi)$. $K \neq \emptyset$ because we know $\varphi(e_G) = e_H$, so $e_G \in K$. If $x, y \in K$, then since φ is a group homomorphism $\varphi(xy) = \varphi(x)\varphi(y) = e_H e_H = e_H$. Hence $xy \in K$ so K is closed under products. Finally, let $x \in K$ and recall that since φ is a group homomorphism $\varphi(x^{-1}) = (\varphi(x))^{-1}$ for all $x \in G$. If $x \in K$, then this says $\varphi(x^{-1}) = (e_H)^{-1} = e_H$. Hence K is closed under inverses too, and K is a subgroup of G.

B) (5) Let $c \in H$, and let $a, b \in \varphi^{-1}(\{c\})$, (the inverse image under the mapping φ). Prove that $ab^{-1} \in \ker(\varphi)$.

Solution: From the given information, $\varphi(a) = \varphi(b) = c$. Hence by the group homomorphism properties.

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1}) = \varphi(a)(\varphi(b))^{-1} = cc^{-1} = e_H$$

Hence by definition, $ab^{-1} \in K = \ker(\varphi)$.

C) (5) Prove that φ is injective if and only if $\ker(\varphi) = \{e_G\}$.

Solution: If φ is injective, there is only one element that maps to e_H , namely e_G . Hence $K = \ker(\varphi) = \{e_G\}$ (and nothing else). Conversely, if $K = \ker(\varphi) = \{e_G\}$ and $\varphi(a) = \varphi(b)$ for $a, b \in G$, then reasoning as in part B, but "working backwards"

$$e_H = \varphi(a)(\varphi(b))^{-1} = \varphi(ab^{-1})$$

Hence $ab^{-1} \in K = \{e_G\}$. This implies $ab^{-1} = e_G$ so a = b. It follows that φ is injective.

IX. (10) Let G be a group, and let $x, y \in G$. The conjugacy relation R on G is defined as follows. We say x and y are *conjugate* in G, xRy, if there exists an $a \in G$ such that $y = axa^{-1}$. Show that the conjugacy relation is an equivalence relation on G.

Solution: R is reflexive: We have $x = exe^{-1}$, so xRx for all $x \in G$ (take a = e in the definition).

R is symmetric: If xRy, then $y = axa^{-1}$ for some $a \in G$. But then $x = a^{-1}ya = byb^{-1}$ if we write $b = a^{-1}$. Hence yRx.

R is transitive: If xRy and yRz, then $y = axa^{-1}$ and $z = byb^{-1}$ for some $a, b \in G$ (not necessarily the same). Then if we substitute for y in the second equation,

$$z = b(axa^{-1})b^{-1} = (ba)x(a^{-1}b^{-1}) = (ba)x(ba)^{-1}$$

(reverse order law for inverses). This shows yRz.