MATH 136 - Calculus 2
Volumes by Slicing
March 10, 2020
Background If a solid extends along the $x$-axis between $a$ and $b$ and the area of the cross-section by a plane $x=$ const is given by some function $A(x)$ for all $x$, then Cavalieri's Principle (named after the Italian Renaissance mathematician Bonaventura Cavalieri, 1598-1647) says that

$$
\text { Volume }=\int_{a}^{b} A(x) d x
$$

## Questions

1. A circular cone extends from $x=0$ to $x=4$ along the $x$-axis. The crosssection in each plane $x=$ constant is a circle whose radius increases linearly from $r=0$ at $x=0$ to $r=5$ by the time $x$ reaches 4 .
(a) Write the radius $r$ as a function of $x$ on the interval 0 to 4 .
(b) Write the area of the circular cross-section as a function of $x$.
(c) Find the volume by applying the Cavalieri Principle equation above.
(d) Check your result with the formula for the volume of a cone from high school geometry.
2. A solid extends along the $x$-axis from $x=-3$ to $x=3$. The crosssection in each plane $x=$ constant is a semicircle with radius $e^{x}$. Find the volume of the solid using Cavalieri's Principle.
3. A solid extends from $x=0$ to $x=10$ along the $x$-axis. The crosssection at $x$ is a square with side $\sqrt[4]{25+x^{2}}$. Set up the integral to compute the volume using Cavalieri's Principle. Evaluate the integral using a trigonometric substitution or a table of integrals.
4. In the previous problem, would it make an difference if the squares all had center point along the $x$-axis or if all the squares had one corner at a point on the $x$-axis?
