MATH 136 - Calculus 2
Second Practice Day on u-substitution
February 5, 2020

Background

Here are a few additional integration formulas that can be used in conjunction with u-substitution:

- If $b>0$, then $\int b^{x} d x=\frac{b^{x}}{\ln (b)}+C$ (This follows by combining the derivative rule for e^{u} by the chain rule with the formula $b^{x}=\left(e^{\ln (b)}\right)^{x}=$ $e^{x \ln (b)}$.)
- $\int \frac{d x}{|x| \sqrt{x^{2}-1}}=\sec ^{-1}(x)+C$ (follows from the derivative rule

$$
\frac{d}{d x} \sec ^{-1}(x)=\frac{1}{|x| \sqrt{x^{2}-1}}
$$

Questions

Find the following integrals using the formulas above and u-substitution as needed:

1. $\int 5^{\cos (x)} \sin (x) d x$

Solution: Use the rule for b^{x} with $b=5$ and $u=\cos (x)$. Then $d u=$ $-\sin (x) d x$, so we have

$$
-\int 5^{u} d u=-\frac{5^{u}}{\ln (5)}+C=-\frac{5^{\cos (x)}}{\ln (5)}+C
$$

2. $\int \frac{d x}{(x+8) \ln (2 x+16)}$

Solution: This one is slightly tricky. We need to notice that if $u=$ $\ln (2 x+16)$, then $d u=\frac{1}{2 x+16} \cdot 2 d x=\frac{1}{x+8} d x$. This means that the integral is

$$
\int \frac{1}{u} d u=\ln |u|+C=\ln |\ln (2 x+16)|+C
$$

3. $\int \frac{d x}{x \sqrt{49 x^{2}-1}}($ Take $x>0$.)

Solution: Let $u=7 x$. Then $d u=7 d x$. The integral becomes

$$
\int \frac{d u / 7}{(u / 7) \sqrt{u^{2}-1}}=\int \frac{d u}{u \sqrt{u^{2}-1}}=\sec ^{-1}(u)+C=\sec ^{-1}(7 x)+C
$$

4. $\int x^{2} \sqrt{x+4} d x$ (Hint: Let $u=x+4$)

Solution: Using the Hint, $d u=d x, x=u-4$, and the integrand becomes

$$
\begin{aligned}
\int(u-4)^{2} \sqrt{u} d u & =\int u^{5 / 2}-8 u^{3 / 2}+16 u^{1 / 2} d u \\
& =\frac{2}{7} u^{7 / 2}-\frac{16}{5} u^{5 / 2}+\frac{32}{3} u^{3 / 2}+C \\
& =\frac{2}{7}(x+4)^{7 / 2}-\frac{16}{5}(x+4)^{5 / 2}+\frac{32}{3}(x+4)^{3 / 2}+C
\end{aligned}
$$

5. $\int_{0}^{1} 4^{3 x} d x$

Solution: Let $u=3 x$, then converting everything to equivalent expressions in u (including the limits of integration), the integral is

$$
\int_{u=0}^{u=3} \frac{1}{3} 4^{u} d u=\left.\frac{1}{3 \ln (4)} 4^{u}\right|_{u=0} ^{u=3}=\frac{1}{3 \ln (4)}\left(4^{3}-1\right)=\frac{21}{\ln (4)} .
$$

