$\begin{array}{l} {\rm MATH} \ 136 - {\rm Calculus} \ 2 \\ {\rm Second} \ {\rm Practice} \ {\rm Day} \ {\rm on} \ u{\rm -substitution} \\ {\rm February} \ 5, \ 2020 \end{array}$

Background

Here are a few additional integration formulas that can be used in conjunction with u-substitution:

• If b > 0, then $\int b^x dx = \frac{b^x}{\ln(b)} + C$ (This follows by combining the derivative rule for e^u by the chain rule with the formula $b^x = (e^{\ln(b)})^x = e^{x \ln(b)}$.)

•
$$\int \frac{dx}{|x|\sqrt{x^2 - 1}} = \sec^{-1}(x) + C \text{ (follows from the derivative rule}$$
$$\frac{d}{dx} \sec^{-1}(x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$

Questions

Find the following integrals using the formulas above and u-substitution as needed:

1.
$$\int 5^{\cos(x)} \sin(x) dx$$

2. $\int \frac{dx}{(x+8)\ln(2x+16)}$
3. $\int \frac{dx}{x\sqrt{49x^2-1}} - \text{take } (x>0)$
4. $\int x^2 \sqrt{x+4} dx$ (Hint: Let $u = x+4$)
5. $\int_0^1 4^{3x} dx$