MATH 136 - Calculus 2
 Practice Day on Consequences of FTC, "Part I"

January 31, 2020

Background

Recall that the "FTC, part I" says: If f is continuous on $[a, b]$ and F is any function satisfying $\frac{d}{d x} F(x)=F^{\prime}(x)=f(x)$ for all x in [a,b] (called an antiderivative of f), then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

We will use the shortcut notation: $\left.F(x)\right|_{a} ^{b}$ for this difference of values at the limits of integration:

$$
\left.F(x)\right|_{a} ^{b}=F(b)-F(a) .
$$

Note that you always put the value $F(b)$ at the upper limit first and then subtract the value at the lower limit, $F(a)$. This means that we have a "shortcut method" for computing $\int_{a}^{b} f(x) d x$ as long as we have or can find a suitable antiderivative F - a function with $F^{\prime}(x)=f(x)$ for the function $f(x)$ we are integrating.

Questions

(1) Verify that

$$
\frac{d}{d x}\left(e^{x^{2}}\right)=2 x e^{x^{2}}
$$

(2) Use part (1) to evaluate:

$$
\int_{0}^{1} 2 x e^{x^{2}} d x
$$

(3) Verify that

$$
\frac{d}{d x}\left(\ln \left(x^{2}+5 x+6\right)\right)=\frac{2 x+5}{x^{2}+5 x+6} .
$$

(4) Use part (4) to evaluate:

$$
\int_{1}^{2} \frac{2 x+5}{x^{2}+5 x+6} d x
$$

(5) Verify that

$$
\frac{d}{d x}\left(\frac{1}{2}(x+\sin (x) \cos (x))\right)=\cos ^{2}(x)
$$

(You'll need a trig identity here - ask if you don't recall identities using $\sin ^{2}(x)$ and $\left.\cos ^{2}(x)!\right)$
(6) Use part (5) to evaluate:

$$
\int_{0}^{\pi / 2} \cos ^{2}(x) d x
$$

