MATH 136 - Calculus 2
 Practice Day on Consequences of FTC, "Part II"

January 29, 2020

Background

Recall that the "FTC, part II" says: If f is continuous on $[a, b]$, then

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

for all x in $[a, b]$. (Note: at the endpoints $x=a$ and $x=b$, we may be talking only about "one-sided derivatives" if f is not defined for $x<a$ or $x>b$.)

Questions
(0) Look at the function $f(t)$ plotted on the back. What is $\frac{d}{d x} \int_{0}^{x} f(t) d t$ at $x=3$?
(1) What is

$$
\frac{d}{d x} \int_{3}^{x} \sqrt[3]{t^{5}+3 t+1} d t ?
$$

(2) Same question for

$$
\frac{d}{d x} \int_{0}^{x} \frac{\tan (t)}{t^{3}+2} d t
$$

(3) What is

$$
\frac{d}{d x} \int_{x}^{4} e^{4 t^{2}+7} d t ?
$$

(4) What about

$$
\frac{d}{d x} \int_{0}^{x^{2}} \sqrt{t^{2}+1} d t ?
$$

(Use the chain rule.)
(5) What is

$$
\frac{d}{d x} \int_{-x^{3}}^{x^{4}} \frac{t}{t+1}
$$

(You'll need to use the interval union property, the interchange of limits property and the chain rule here!)

Figure 1: The region
(6) Finally, suppose someone asked you for a function whose derivative was $f(x)=\frac{x^{2}}{x^{4}+x+1}$. How could you "cook one up" using what we have talked about? (In case you are worried about possible discontinuities from vertical asymptotes, you don't need to: this function f is continuous for all real x - the denominator is never zero.)

