> MATH 136 - Calculus 2
> Practice Day on Properties of $\int_{a}^{b} f(x) d x$
> January 27, 2020

Background

We have now introduced the definite integral $\int_{a}^{b} f(x) d x$ and discussed:

- the interpretation of of this number as a signed area,
- the interval additivity property: If f is integrable on $[a, b]$ and $a \leq c \leq b$, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

- In one video for today, we also saw the comparison property: If f is integrable on $[a, b]$ and $m \leq f(x) \leq M$ for all x in $[a, b]$, then

$$
m \cdot(b-a) \leq \int_{a}^{b} f(x) d x \leq M \cdot(b-a)
$$

Questions Let $f(x)$ be the function on the interval [0,6] plotted on the back. Thinking of the definite integral as signed area, answer these questions.
(1) What are $\int_{0}^{4} f(x) d x, \int_{4}^{6} f(x) d x, \int_{0}^{6} f(x) d x$? How can you get the last one by using the first two?

Answers: $\int_{0}^{4} f(x) d x=1 \cdot 2+\frac{1}{2} \cdot(1+3) \cdot 2=6$. (I'm seeing this as a rectangle on $[0,2]$ together with a trapezoid on $[2,4]$, but there are other ways to do it as well.) $\int_{4}^{6} f(x) d x=\frac{1}{2} \cdot \frac{3}{2} \cdot 3-\frac{1}{2} \cdot \frac{1}{2} \cdot 1=2$. (I'm seeing this as one triangle above the x-axis and a second triangle below the x-axis and doing the signed area. To get $\int_{0}^{6} f(x) d x$, the best way is to use the interval additivity:

$$
\int_{0}^{6} f(x) d x=\int_{0}^{4} f(x) d x+\int_{4}^{6} f(x) d x=6+2=8
$$

(2) What is $\int_{5}^{6} f(x) d x$? How can you tell?

Answer: It must be true that $\int_{5}^{6} f(x) d x=0$. The triangle above the x-axis for x in $[5,11 / 2]$ is congruent to the triangle below the x-axis for x in $[11 / 2,6]$, hence they have the same area. By the interval additivity property, the integral from 5 to 6 equals the integral from 5 to $11 / 2$, plus the integral from $11 / 2$ to 6 . With the negative sign for the triangle below the x-axis, the sum is 0 .
(3) Let m be the minimum value of $f(x)$ on $[3,5]$ and let M be the maximum value of $f(x)$ on $[3,5]$ (use the information from the graph). Find m, M and verify that

$$
m \cdot(5-3) \leq \int_{3}^{5} f(x) d x \leq M \cdot(5-3)
$$

Answer: $m=1$ and $M=3$. We have $m \cdot(5-3)=2$ and $M \cdot(5-3)=6$. On the other hand

$$
\int_{3}^{5} f(x) d x=\int_{3}^{4} f(x) d x+\int_{4}^{5} f(x) d x=\frac{1}{2}(2+3)+\frac{1}{2}(3+1)
$$

(two trapezoids). So this integral is $=\frac{9}{2}$. Note that $2 \leq \frac{9}{2} \leq 6$, so we have verified that the comparison property holds in this case.

Figure 1: The region

